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Abstract—Network-on-chip (NoC) has been proposed as a
solution for the communication challenges of System-on-chip
(SoC) design in nanoscale technologies. Application specific
SoC design offers the opportunity for incorporating custom
NoC architectures that are more suitable for a particular ap-
plication, and do not necessarily conform to regular topolo-
gies. This paper presents novel linear programming based
techniques for synthesis of custom NoC architectures. The
optimization objective of the techniques is to minimize the
power consumption subject to the performance constraints.
We present a two stage approach for solving the custom NoC
synthesis problem. The physical links and routers together
determine the power consumption of the NoC architecture.
The power consumption of the routers is linearly dependent
on the bandwidth of data flowing through them. The power
consumption of the physical links is linearly dependent on
both the length of the links and the supported bandwidth
of data. The length of the physical links, in turn, is gov-
erned by the layout of the SoC. Therefore, in the first stage,
we address the floorplanning problem that determines the
locations of the various cores and the routers. In the sec-
ond stage, we utilize the floorplan from the first stage to
generate topology of the NoC and the routes for the various
traffic traces. We present mixed integer linear programming
formulations for the two stages. We also present a clustering
based heuristic technique for the second stage to reduce the
run times of the formulation. We analyze the quality of the
results and solution times of the proposed techniques by ex-
tensive experimentation with realistic benchmarks. We also
compare the custom topologies synthesized by our technique
with regular mesh and QNoC based architectures.

I. Introduction

International Technological Roadmap for Semiconduc-
tors [1] predicts that future generations of the high end SoC
architectures will be implemented in less than 50 nm tech-
nology, and clocked in the 10−20 GHz range. Global signal
delays will span multiple clock cycles [2] [3], and make syn-
chronous communication infeasible. Signal integrity would
also suffer due to increased RLC effects. NoC has been pro-
posed as a solution for the communication challenges in the
nanoscale regime [4] [5]. NoC supports asynchronous trans-
fer of packets. Given a suitable topology, it can provide
extremely high bandwidth by distributing the propagation
delay across multiple switches, and thus pipelining the sig-
nal transmission. In the lower left hand side half of Figure
1, a SoC architecture with a NoC is depicted. In the figure,
the various “P/M” blocks denote processing (DSP, ASIC)
cores or storage elements (SRAM, CAM), and the black
boxes denote the router nodes. The lines between various
blocks represent the physical links. The black blocks along
with the physical links form the NoC.
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Fig. 1. System-level NoC Architecture Synthesis

This paper addresses the design of a NoC in the con-
text of application specific SoC architecture. Application
specific SoC design offers the opportunity for incorporating
custom NoC architectures that are optimized for the target
problem domain, and do not necessarily conform to regular
topologies. Regular topologies are suitable for general pur-
pose architectures such as the MIT RAW [6] that include
homogeneous cores. Application specific SoC architectures
consist of heterogeneous cores and memory elements which
have vastly different sizes. For such architectures, as the
results of the paper (and those by [7]) demonstrate, the cus-
tom NoC architecture is superior to regular architecture in
terms of power and area consumption under identical per-
formance requirements. Re-use of topologies and reduced
design time are the two primary advantages of regular NoC
architectures.

There are a number of limitations of the regular intercon-
nection architecture. It assumes that all cores are of the
same size, which is not the case for custom SoC. There-
fore, even if the system-level topology is regular, it does
not remain regular after the final floorplanning stage. The
alternative option of regular layout results in large amount
of area overhead. The regular topology assumes that every
core has equal communication bandwidth with every other
core. This does not hold in realistic applications. Regular
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topologies are known to support design reuse. In custom
topologies, the router architecture itself is regular and can
be easily parameterized (on number of ports, width of phys-
ical links, number of virtual channels and so on). In other
words, custom NoC architectures also support design reuse.
Therefore, this paper concentrates on custom NoC topolo-
gies that are optimized for the target application. We also
extend our techniques to mesh based interconnection ar-
chitectures, and compare them against custom topologies.

The complexity of automated system-level design can be
addressed by decomposing it into two stages: (i) compu-
tation architecture synthesis, (ii) physical design and com-
munication architecture synthesis. The output of the com-
putation architecture design stage would be a collection of
processing and memory cores, and a mapping of the com-
putation and storage operations on the respective cores.
This problem has been addressed widely in the system-
level synthesis [8] [9] [10] community. Many of these tech-
niques do not consider a detailed communication architec-
ture and hence, the existing techniques could be applied
toward computation architecture design that utilizes NoC.
This paper focuses on the problem of automated applica-
tion specific NoC synthesis.

Communication architecture synthesis is shown in Fig-
ure 1. The input to the communication architecture syn-
thesis problem is the computation architecture specifica-
tion, characterized library of interconnection network com-
ponents, and performance constraints. The computation
architecture consists of processing and memory elements
shown by rectangular blocks labeled as “P/M” in the top
of the figure. Each ”P/M” block is uniquely identified by a
node number ”n i” as denoted within each rectangle. The
physical dimensions of the blocks are also specified as part
of the inputs.

The directed edges between any two blocks represent the
communication traces. The communication traces are an-
notated as “Cm(B,L)” where ‘m” represents the trace num-
ber, “B” represents the bandwidth requirement, and “L” is
the latency constraint. The bandwidth and latency require-
ments of a communication trace can be obtained by profil-
ing the system-level specification in the context of overall
application performance requirements. The traffic model
that we assume for synthesis abstracts away the transac-
tion based mechanism to derive a continuous stream model.
Consider a core that sends a packet of size 256 bits every
1000 clock cycles. Assuming that the clock cycle is 3 ns,
the communication trace can be abstracted as a continuous
stream with 85 Mbps bandwidth requirement. Thus, al-
though the actual design would perform transaction based
communication, we assume there is a continuous stream
of equivalent bandwidth. Applications in multimedia and
network processing domains demonstrate well defined peri-
odic communication characteristics and hence, can be eas-
ily modelled in the trace graph.

The characterized library of interconnection architecture
components is depicted on the left hand side of the figure.
In nanoscale technologies, minimizing power consumption
is a first order design goal along with performance maxi-

mization. Therefore, the components are characterized for
both performance and power consumption. Each router ar-
chitecture is characterized by i) the number of router ports,
ii) the peak bandwidth supported at input or output ports,
and iii) the power consumed to transfer data across the
ports. The power consumption in a port is a function of
the total traffic following through it. Hence, the port is
characterized by power consumed per unit bandwidth of
traffic. For example, the library might contain a 5-port
router with an upper limit of 5.12 Gbps on the bandwidth
that can be supported at each port, and an power consump-
tion of 65.6 nW/Mbps and 328 nW/Mbps on output and
input ports, respectively. In nanoscale technologies global
physical links are also significant consumers of power. The
power consumption in the physical link is a function of
the bandwidth of data following through the link, and the
length of the link. Therefore, the physical links are char-
acterized by power consumed per unit bandwidth per unit
length. For example the physical links might be character-
ized as consuming 79.6 nW/Mbps/mm.

The output of the communication architecture synthe-
sis problem is a system-level floorplan of the final design,
topology of the network, and static routing of the com-
munication traces on the network such that the perfor-
mance constraints are satisfied, and the power consump-
tion is minimized. Accurate estimation of power consump-
tion due to the physical links requires estimates for link
lengths. Consequently, system-level floorplanning is per-
formed as part of the communication architecture synthe-
sis. The topology of the network specifies the number of
routers, and their interconnections. The static routing of
a communication trace is shown on the right hand side
of Figure 1. For example , C2 begins from “n1”, passes
through “r1” and “r2”, and ends at “n3”.

In the following sections we first discuss the architecture
and characterization of the router that we utilized for gen-
erating the experimental results, and then formally define
the custom NoC synthesis problem.

A. Router Architecture and power characterization

Figure 2 shows the top-level (left hand side) and detailed
(right hand side) architecture of a 5-port NoC router as-
sumed in this paper. The router consists of five unit routers
that communicate with the neighboring routers, and with
the processor. Unit routers inside a single router are con-
nected through a 5x5 crossbar. Data is transferred across
routers or between the processor and the corresponding
router by a four phase asynchronous handshaking protocol.
A single unit router, and corresponding input and output
ports are highlighted in the right half of the figure. The
unit router consists of input and output link controllers,
input and output virtual channels, a header decoder, and
an arbiter.

Data arrives at an input virtual channel of a unit router
from either the previous router or the processor connected
to the same router. The header decoder decodes the header
flit of the packet after receiving data from the input vir-
tual channel, decides the packet’s destination direction,
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and sends a request to the arbiter of the unit router in
the corresponding direction for access to the crossbar. In
other words, the header decoder performs the task of rout-
ing the packet. We assume that the routing strategy is an
application specific scheme and the header decoder decides
the output port based on the communication trace identi-
fier (ID). The communication trace ID uniquely identifies
a particular data stream flowing from a source node to the
destination. Once the grant is received, the header decoder
starts sending data from the input to the output virtual
channel through the crossbar.

We characterize the power consumption of the unit
router in 100 nm technology with the help of a cycle accu-
rate power and performance evaluator [11]. The cycle accu-
rate simulator was constructed by characterizing the power
and performance of each of the router sub-components and
physical links through Hspice simulations. In the exper-
iment the width of the physical links (consequently the
width of input and output FIFO, and crossbar) is 32 bits,
number of virtual channels is 2, depth of virtual channels
is 4, and the number of flits in the packet is 8 (packet size
256 bits). The neighboring link controllers utilize a 2-clock
cycle hand-shaking protocol to transfer a flit across the
physical links. Therefore the maximum bandwidth that
can be supported over the physical links is 16 bits/cycle
or 0.0625 packets/cycle. The clock period was conserva-
tively assumed to be 3ns. The simulator was first allowed
to stabilize for 3µs (1000 clock cycles), and the data was
collected over the next 7µs (2333 clock cycles). Notice that
the experiment is performed for the characterization of only
one port of a router. Thus, 2333 clock cycles are sufficient.

A.1 Power consumption in input port of unit router

The first experiment evaluated the power consumption
of a port due to the traffic flowing into the unit router.
The total power consumption due to traffic at a particular
input port is the summation of the power consumed by the
link controller, header decoder, input FIFO and crossbar.
We considered a 5-port router with 5 processors attached
to each port as shown in Figure 3. Processor 1 sends pack-
ets with random contents to the 4 other processors with a
uniformly random distribution. Figure 5 plots the power
consumption in the input port for the 4 components (link
controller, header decoder, input FIFO, crossbar) for vary-
ing injection rate at processor 1. The delay for a particular
injection rate was uniformly distributed within the mean
delay interval. As can be observed from the plot the power
consumption in the input port varies linearly with the in-
jection rate, and can be approximated by P = (28× i)mW
where i is the bandwidth in packets/cycle injected into the
port and 28 is the slope of the line. For a clock period of
3ns, the power per Mbps of input data passing through the
port is given by P = 328nW/Mbps.

A.2 Power consumption in output port of unit router

The second experiment evaluated the power consumed
at a particular output port of a unit router due to traffic
flowing in the outward direction to a neighboring router
or core. We considered a 5-port router with processors
(1-4) attached to four input ports as shown in Figure 4.
All the four ports inject packets that traverse through
the fifth port to processor 5 attached to the neighboring
router. The contents of the packets where randomly gen-
erated, and the delay for a particular injection rate was
also uniformly distributed within the mean delay interval.
We evaluated the total power consumption of the arbiter,
output FIFO, and link controller for varying cumulative in-
jection rate from the four processors. Figure 6 plots the to-
tal power consumption (for the arbiter, output FIFO, link
controller) versus the cumulative injection rate. The power
consumption of the output port also varies linearly with
the cumulative injection rate and can be approximated as
P = (5.6 × i)mW where “i” is the bandwidth in pack-
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Fig. 10. Latency for 4x4 mesh

ets/cycle passing through the port and 5.6 is the slope of
the line. Again, for a clock cycle of 3ns, the power per
Mbps of output traffic passing through the port is given by
P = 65.5nW/Mbps.

A.3 Power consumption in physical links

Figures 7 and 8 plot the variation in link power consump-
tion versus injection rate (for a constant link length of 2.5
mm) and link length (for a constant injection rate 0.0089
packets/cycle), respectively. As can be observed from the
figures the link power varies linearly with both injection
rate and link length. The slope of the plot in Figure 7
can be approximated as (16.915× i)mW where i is the in-
jection rate in packets per cycle. As the link power also
varies linearly with link length we can divide the slope of
the plot by the corresponding length to obtain a function
for the link power. Hence, the link power can be approx-
imated as (6.79 × i × l)mW where l is the link length in
mm. Thus, with a clock cycle of 3ns, the power consump-
tion of the link per Mbps per mm can be expressed as
P = 79.6nW/Mbps/mm.

A.4 Latency

Figure 9 plots the average latency versus the injection
rate for the packets in experiment 2 (Figure 4). Please
note that the x-axis plots the injection rate due to one
processor as opposed to the cumulative injection rate of
the four processors as in Figure 6. As can be observed
from the figure, the average latency remains constant un-
til the output port gets congested. The injection rate at
which the output port gets congested is given by 0.01563
packets/cycle/port. A similar trend is observed (see Fig-
ure 10) when we consider a 4 x 4 mesh architecture with 16
processors that are injecting to uniformly distributed ran-

dom destinations. The average network latency remains
constant until the network gets congested. The network
congestion is marked by a sharp increase in average latency.
Our synthesis technique prevents network congestion by
static routing of the communication traces subject to the
peak bandwidth constraint on the router ports. Since the
network is always operated in the un-congested mode, we
can represent the network latency constraint in terms of
router hops (such as 1 or 2) instead of an absolute number
(such as 100 cycles).

A.5 Other router architectures

Although the above discussion was based on a router ar-
chitecture assumed by our paper, the characterization tech-
niques, observations, and the corresponding conclusions are
applicable for other router architectures as well.

B. Problem Definition

Given:
• A directed communication trace graph G(V,E), where
each vi ∈ V denotes either a processing element or a mem-
ory unit (henceforth called a node), and the directed edge
ek = {vi, vj} ∈ E denotes a communication trace from vi

to vj . For every vi ∈ V , the height and width of the core
is denoted by Hi and Wi, respectively.
• For every ek = {vi, vj} ∈ E, ω(ek) denotes the band-
width requirement in bits per cycle, and σ(ek) denotes the
latency constraint in hops.
• A router architecture, where η denotes the number of
input/output ports of the router, and Ω denotes the peak
input and output bandwidth that the router can support
on any one port. Thus, each port of a router can support
equal bandwidth in input and output modes. Since a node
v ∈ V is attached to a port of a router, the bandwidth to
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any node from a router, and from any node to a router is
less than Ω. Two quantities Ψi and Ψo that denote the
power consumed per Mbps of traffic bandwidth flowing in
the input and output direction, respectively for any port
of the router.
• A physical link power model denoted by Ψl per Mbps
per mm.
• Two constants H and W that denote the height and
width constraints on the overall dimensions of the system-
level floorplan.
• Two constants γmin and γmax that denote the lower and
upper bounds on the aspect ratio of the layout.

Let R denote the set of routers utilized in the synthe-
sized architecture, Er represent the set of links between two
routers, and Ev represent the set of links between routers
and nodes. The objective of the NoC synthesis problem is
to:

• generate a system-level floorplan and
• a network topology T (R, V, Er, Ev),

such that:

• for every ek = (vi, vj) ∈ E, there exists a route
p ={(vi, ri), (ri, rj), . . . (rk, vj)} in T that satisfies ω(ek),
and σ(ek),
• the bandwidth constraints on the ports of the routers are
satisfied,
• the bounding box of the floorplan satisfies H and W,
• the aspect ratio of the floorplan lies between γmin and
γmax, and
• the total system-level power consumption for inter-core
communication is minimized.

The NoC synthesis problem consists of the floorplanning
problem, and the interconnection network generation prob-
lem. The floorplanning problem is a variation of quadratic
assignment problem [12], and is known to be NP hard. The
interconnection network generation problem is a variation
of the generalized steiner forest problem [13], which is also
known to be NP hard.

In this paper, we present a two stage approach to solv-
ing the custom NoC synthesis problem. In the first step we
generate the system-level floorplan of computation archi-
tecture with an objective of minimizing the communication
power consumption subject to the layout constraints. Our
methodology exploits the fact that the dimensions of the
routers are much smaller than those of the processing and
memory cores. The possible locations of the routers are
assumed to be at the corners of the various cores in the
layout. In the second stage we generate the actual topol-
ogy of the interconnection network and specify the routes
for the various communication traces based on the floor-
plan generated in the previous stage.

The objective of our technique is to minimize the power
consumption required for performing communication. The
power consumption of the NoC is a function of the sup-
ported bandwidth of data and distance between the cores.
This would imply that cores with high communication
bandwidth must be placed close to each other at the ex-
pense of cores with lower communication bandwidth. How-
ever, the distance between cores is constrained by the la-

tency of communication traces. Larger distances would
imply more router hops and therefore increased latencies.
In the floorplanning stage we minimize an objective func-
tion that effectively captures the trade-off between power
consumption and latency.

We present linear programming based techniques for
solving the system-level floorplanning problem in the con-
text of NoC synthesis, and the actual interconnection
topology generation problem. 1 We discuss optimal mixed
integer linear programming (MILP) formulations for both
the problems. The MILP formulation for the interconnec-
tion architecture generation in particular is constrained by
large solution times. Therefore, we also present a clustering
based heuristic technique for alleviating this limitation.

The solutions generated by our technique could have
deadlocks between the various communication traces.
However, the deadlocks can be removed by a post-
processing step that introduces additional virtual channels
at selected routers [14].

The paper is organized as follows: Section II discusses
the previous work, Section III presents the MILP formula-
tion, Section IV presents the clustering based approach,
Section V presents the experimental results, Section VI
presents a discussion on our techniques and future work,
and finally Section VII concludes the paper.

II. Previous work

In recent years a number of researchers have proposed
architectures, performance evaluation techniques and opti-
mization approaches for NoC. Our work in this paper falls
in the category of automated optimization approaches. In
the following paragraphs, we discuss previous work in the
first three categories, and then compare and contrast our
work with existing research in the fourth category.

A. NoC architectures and performance models

Guerrier et al. [17], Hemani et al. [18], Sgroi et al.
[19], Dally et al. [4], Benini et al. [5], and Kumar et al.
[20] were early works that motivated the design of NoC
for supporting on-chip communication. Taylor et al. [6]
designed and fabricated a 4x4 mesh based NoC architecture
as part of MIT RAW processor. In this paper, we build on
the research cited above and present linear programming
based techniques for automated synthesis of custom NoC
architectures.

Since the early research, several researchers have pro-
posed architectures for on-chip interconnection networks.
SPIN [17] [21] [22] was one of the seminal works to pro-
pose a detailed NoC architecture built with fat tree topol-
ogy. Proteo [23] [24] and xpipes [25] are router architec-
tures that can be utilized in standard (ring, star, and bus)
and arbitrary topologies, respectively. The xpipesCompiler
proposed by Jalabert et al. [7] is a custom topology in-
stantiation framework. However, it does not provide any
support for NoC synthesis. Therefore, our work can be con-
sidered to be complementary to xpipesCompiler. Nostrum

1The paper is an integrated and extended version of our two con-
ference papers [15][16].
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[26] [27] , AEthereal [28] [29] and Vellanki et al. [30] discuss
mesh based NoC architectures that support both guaran-
teed throughput and best effort traffic classes. Bertozzi
et al. [31] and Zimmer et al. [32] presented error control
schemes for on-chip buses and NoC architectures, respec-
tively. Worm et al. [33], Chen et al. [34], Simunic et al.
[35] and Nilsson et al. [36] proposed low power optimiza-
tions based on inter-router signalling scheme, buffer allo-
cation policy, global network state, and clocking scheme,
respectively.

[37] [38][39] [40] presented performance evaluation mod-
els for micro-interconnection networks that do not consider
on-chip networks. Wassal et al. [41], and Ye et al. [42],
proposed power models for switch fabrics of internet pro-
tocol and NoC routers, respectively. Wang et al. [43], and
Bolotin et al. [44] proposed simulation based and analyti-
cal models for power evaluation of NoC. Pamunuwa et al.
[45] presented analytical models for estimating the wiring
overhead and the gate count for mesh-based NoC architec-
tures. In this paper we utilized the cycle accurate power
and performance model proposed by Banerjee et al. [11] to
characterize the unit router and physical links, respectively.

Existing research on NoC architectures and performance
models concentrate on architectures that conform to regu-
lar topologies. Application specific NoCs need not conform
to a regular topology. In this paper, we present automated
techniques to generate application specific irregular topolo-
gies that minimize the communication power and router
requirements of the NoC.

B. Automated design techniques

In recent past, researchers have begun to address the
problem of automated synthesis of NoC architectures.
Pinto et al. [46] presented a technique for constraint
driven communication architecture synthesis of point to
point links by utilizing deterministic heuristic based k-way
merging. Their technique results in network topologies that
have only two routers between each source and sink. Hence,
their problem formulation does not address routing. Lei et
al. [47] and Ascia et al. [48] presented genetic algorithm
based techniques for mapping tasks on mesh based NoC
architectures. Hu et al. [49] presented a branch and bound
technique to map IPs onto a regular mesh based NoC archi-
tecture. In [50], the authors extended the work presented
in [49] to incorporate a deadlock free deterministic routing
function. In both papers the authors assume that a NoC
architecture already exists, and has a mesh topology. Our
work on the other hand addresses design of an application
specific NoC, and does not assume an existing interconnec-
tion network architecture. We synthesize a custom NoC
architecture, and map or route the communication traces
on the topology such that the performance constraints are
satisfied and the communication power consumption of the
NoC is minimized. In [51], the authors presented an al-
gorithm that schedules both computation and communica-
tion transactions onto mesh based NoC architectures under
real time constraints. We differ from [51] in many aspects.
First, the authors address the problem of scheduling tasks

on different cores that are interconnected in a NoC with
regular mesh topology. We on the other hand, solve the
problem of synthesis of a custom NoC topology and map-
ping of cores on the topology. Second, we do not assume
that the traffic is transaction based. Our techniques ad-
dress the synthesis and mapping of communication traces
as a network flow problem.

III. MILP formulations

In this section we present the MILP formulations for
solving the NoC synthesis problem. We address the prob-
lem by splitting it into two sub-problems: i) system-level
floorplanning with an objective of minimizing the power
consumption of the NoC subject to the layout constraints
and ii) NoC topology and route generation again with an
objective of minimizing the power consumption subject to
the performance constraints.

A. System-level floorplanning

We present an NoC centric floorplanning formulation
that minimizes communication power consumption by uti-
lizing a unique cost function. At the floorplanning stage
the power consumption due to the interconnection archi-
tecture can be abstracted as the power required to perform
communication via point to point physical links between
communicating cores. Although, such a cost function does
not include the router power consumption, it is a true rep-
resentation of the power consumption due to the physical
links. However, inclusion of only the power consumption
in the cost function ignores the performance requirements
on the communication traces. Bandwidth constraints on
the communication traces can be satisfied by finding alter-
native routes or adding more interconnection architecture
resources. However, satisfying latency constraints is more
difficult if the cores are placed wide apart. In addition to
minimizing power and latency, it is also important that
the layouts consume minimum area. Therefore, we spec-
ify our minimization goal as a linear combination of the
power-latency function, and the area of the layout. Math-
ematically, we minimize

α ·





∑

∀e(u,v)∈E

dist(u, v) · Ψl ·
ω(e)

σ2(e)



 + β · [Xmax + Ymax]

where dist(u, v) is the distance between the cores u and v,
α and β are constants, and Xmax and Ymax represent the
boundaries in positive X and Y directions, respectively.
Note that minimizing Xmax and Ymax minimizes the area
that is given by Xmax × Ymax. The MILP is formulated
such that the layout is obtained in the first quadrant. Thus,
all the co-ordinates are greater than or equal to zero. The
above optimization function gives a higher priority to la-
tency constraint of a communication trace as opposed to
the bandwidth. The values of the constants α and β de-
termine the relative weight given to power minimization
compared to area minimization and are specified by the
designer. In the following section we describe the MILP
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formulation2.

A.1 Variables

Independent variable: As mentioned before, we assume
that the cores are placed in the first quadrant of the XY
plane. For each core vi ∈ V let (Xi,min, Yi,min) denote the
lower left hand side co-ordinate of the placed core.

Dependent variables: The formulation utilizes the follow-
ing derived variables:
• For each core vi ∈ V let (Xi,max, Yi,max) denote the up-
per right hand side corner of the placed core. Thus,

Xi,max = Xi,min + Wi, Yi,max = Yi,min + Hi

• For each pair of cores vi, vj ∈ V , let DX i,j denote the
difference between the x co-ordinates of the top right corner
of the placed cores, and DYi,j denote the corresponding
difference between the y co-ordinates. Thus:

DX i,j = Xi,max − Xj,max, DYi,j = Yi,max − Yj,max

Since these differences can be negative, DX i,j and DYi,j

are un-restricted variables.
• For each pair of cores vi, vj ∈ V , let Xi,j and X ′

i,j denote
binary (0,1) variables that are given by:

Xi,j =

{

1 if Xi,min ≥ Xj,max

0 otherwise

X ′
i,j =

{

1 if Xj,max > Xi,min

0 otherwise

Xi,j and X ′
i,j can be obtained by the following linear equa-

tions:

Xi,min − Xj,max −Xi,j · MAXV AL < 0

Xj,max − Xi,min −X ′
i,j · MAXV AL ≤ 0

Xi,j + X ′
i,j = 1

where MAXV AL is a very large integer.
• Let Yi,j and Y ′

i,j denote similar quantities along the y
co-ordinates.

A.2 Objective function

The objective function for the floorplanning stage is to:

Minimize (P + A)

where

P = α ·





∑

∀e(vi,vj)∈E

Ψl ·
ω(e)

σ2(e)
· (|DX i,j | + |DYi,j |)





A = β · [Xmax + Ymax]

2Although MILP formulations for system level floorplanning have
been proposed in the literature [52] [53] [54], we include our formula-
tion so that we can discuss extensions for mesh based topologies.

Fig. 11. Example mesh based floorplan

i

j

Fig. 12. Illegal layout
in mesh based topology

We model |DX i,j | by introducing two variables DX+
i,j

and DX−
i,j . We define:

DX+
i,j −DX−

i,j = DX i,j and DX+
i,j + DX−

i,j = |DX i,j |

During minimization, the solver will set either DX+
i,j or

DX−
i,j to zero, and the other to one. Similarly, we introduce

DY+
i,j and DY−

i,j and define them as:

DY+
i,j −DY−

i,j = DYi,j and DY+
i,j + DY−

i,j = |DYi,j |

A.3 Constraints

• Floorplanning requires that no two cores overlap when
they are placed on the layout. Therefore, for each pair of
cores vi, vj ∈ V one of the following four conditions must
be true:

Xi,min ≥ Xj,max, Xj,min ≥ Xi,max

Yi,min ≥ Yj,max, Yj,min ≥ Yi,max

Therefore,

DX i,j + DX j,i + DYi,j + DYj,i ≥ 1

• Apart from minimizing the power and area, the layout
should satisfy the given aspect ratio constraints. Therefore,

Ymax ≥ γmin × Xmax

Ymax ≤ γmax × Xmax

• The layout should not violate the X and Y boundaries.
Therefore, for each node i ∈ V ,

Xi,max ≤ Xmax

Yi,max ≤ Ymax

A.4 Additional constraints for mesh based topologies

We compare and contrast the custom topologies gener-
ated by our techniques against mesh based topologies. An
example of the mesh based layout is shown in Figure 11.
The cores in the mesh based layout are aligned along a
grid. The height and width of a row and column in the
grid is determined by the largest core in the particular row
or column, respectively. In the mesh based floorplan, in
addition to the constraints described earlier for the generic
layout, we require more constraints that avoid the illegal
case shown in Figure 12. In Figure 12 the two cores are
not aligned along a column, and therefore cannot be laid
out on a grid.



8

For each pair of cores vi, vj ∈ V we introduce pair of
binary variables GX i,j and GYi,j defined as:

GX i,j =

{

1 if Xi,max > Xj,max

0 otherwise

GYi,j =

{

1 if Yi,max > Yj,max

0 otherwise

GX i,j and GYi,j can be obtained by similar linear equations
as those defined for Xi,j .

The various cores will be aligned along a grid if the
following equations are satisfied for each pair of cores
vi, vj ∈ V :

GX i,j + X ′
i,j ≤ 1

GYi,j + Y ′
i,j ≤ 1

B. Custom interconnection topology and route generation

The power consumption of the NoC is dependent upon
the length of the physical links in the architecture. We uti-
lize the floorplan from the previous stage to select router
locations, and thus determine inter router, and node to
router distances. By intelligently determining router loca-
tions, we can reduce the size of the MILP formulation and
thus, reduce its runtime.

Initially, we create a bounding box for each node. A
bounding box is a rectangular enclosure of the node such
that the bounding boxes of two adjacent nodes abut each
other. For example, in Figure 13 (A), the bounding box of
node 4 extends to the top boundary of node 3, and that of
node 10 extends to the top boundary of node 12, and to the
left boundary of node 9. In the figure, all other bounding
boxes are the co-ordinates of the respective nodes.

The second step is the placement of routers. We exploit
the fact that the dimensions of routers are much smaller
than that of the processing cores [14]. Therefore, once
the bounding boxes are generated, we place routers at the
nodes of the channel intersection graph [52] formed by the
bounding boxes. A channel intersection graph is a graph
in which the bounding boxes form the edges, and the in-
tersection of two perpendicular boundaries forms a node.
In Figure 13 (B), the black circles depict the placement of
routers at the channel intersections.

Finally, we remove all redundant routers. We remove all
routers that are:
• placed along the perimeter of the layout, and
• placed less than a specified distance apart.
The motivation for removing routers can be explained as
follows. The routers in the perimeter are not likely to be
utilized, and are redundant. Similarly, if two routers are
placed very close to each other, one of them becomes re-
dundant as it is unlikely to be utilized in the final topology.

The location and number of routers available for the sec-
ond stage depends on the algorithm used to remove redun-
dant routers. Our algorithm for removing routers is shown
in Figure 14. First, the algorithm removes the routers along
the perimeter of the floorplan. Figure 13 (C) depicts the
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Fig. 13. Example of router allocation for custom topology

rem redundant rtrs()

1 rem perimeter rtrs()

2 initialize()

3 for (r ∈ R)

4 L(r) = get close rtr(r)

5 end for

6 cur rtr = bottom left rtr()

7 rem close rtrs(cur rtr)

8 return

rem close rtrs(cur rtr)

1 for (r ∈ L(cur rtr))

2 set(r) = removed

3 end for

4 set(cur rtr) = tagged

5 next rtr = get next rtr()

6 if (next rtr = NULL)

7 return

8 else

9 rem close rtrs(next rtr)

10 end if

11 return

Fig. 14. Algorithm for removing redundant routers

stage when the routers along the perimeter are removed.
After removing routers along the perimeter, the algorithm
calls the initialization function that marks all the internal
routers as free. In lines 3-5, the algorithm generates a list
L for each router that specifies the routers that are less
than the minimum distance from it. Line 6 of the algo-
rithm sets the current router (cur rtr) to be the router
at the bottom left hand corner of the layout, which is the
router at the bottom left hand corner of node 12 in Figure
13. The next line calls the function rem close rtrs that re-
moves all routers that are in L(cur rtr), marks cur rtr as
tagged, and hops to the closest available router (next rtr)
that is free (neither tagged nor removed). The function
rem close rtrs recursively calls itself with next rtr as pa-
rameter, until all routers are either tagged or removed. 13
(D) depicts the stage when routers are placed at more than
a specified minimum distance apart.

Let R denote the total number of available routers. In
the algorithm, each router is either tagged, or removed. A
router cannot be both tagged and be removed. Therefore,
the complexity of the algorithm is given by O(|R|).

We can further minimize the size of the formulation by
limiting the number of routers that a node can be mapped
to. Since the layout places communicating nodes close to
each other, it is very unlikely that an optimal solution will
have a node that is mapped to a router located at a large
distance away from it. Therefore, for each node, we con-
sider only those routers that are within a certain maximum
distance from it. The distance is specified by the designer.
Let Ri denote the set of routers available to node vi.

Since we know the location of the routers, we can deter-
mine the shortest distance from a node vi to the routers in
Ri. By the same argument, we can also determine all inter
router distances.

The objective function of the formulation is minimiza-
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tion of the communication power. The power consumption
in the NoC is the sum of the power consumed by the routers
and the physical links. The power consumed by the routers
is given by the product of the bandwidth of data flowing
through the ports and the characterization function that
specifies the power consumption per unit bandwidth. Sim-
ilarly, the power consumption in a physical link is a product
of the bandwidth of data flowing through the link, length of
the link and the characterization function that specifies the
power consumption per unit bandwidth per unit length.

In Section III-B.1 we define the variables of the formu-
lation, in Section III-B.2 we state the objective function,
and in Section III-B.3, we present the constraints.

B.1 Variables

Base Variables: We define the following base (indepen-
dent) variables.
• Number of routers: Let ri ∈ R, 0 ≤ i ≤ Rmax denote
a router. Each router in the NoC architecture is identical
with the same number of ports “η”, and peak bandwidth
“Ω” per port. All ports are bidirectional.
• Ports of the router: Let pi,j , 0 ≤ j < η, represent the jth

port of a router ri ∈ R.
• Node-to-port mapping variables: For each node vk ∈ V ,
let Rk denote the set of routers that it can be mapped
to. Let NRk,i,j be a {0,1} variable that is 1 if node vk is
mapped to port pi,j of router ri ∈ Rk, otherwise 0. For
each router rm /∈ Rk, ∀pm,j , NRk,m,j = 0
• Port-to-port mapping variables: For each port pi,j of
router ri ∈ R, let RRi,j,k,l be a {0,1} variable that is 1
if port pi,j of router ri ∈ R is linked to port pk,l (k 6= i) of
router rk ∈ R, otherwise 0.
• Variable for flow of traffic out of a port: For each edge
{vi, vj} ∈ E, let Oi,j,k,l be a {0,1} variable that is 1 if traffic
from node vi to node vj flows out of port pk,l, otherwise 0.
• Variable for flow of traffic into a port: For each edge
{vi, vj} ∈ E, let Ii,j,k,l be a {0,1} variable that is 1 if traffic
from node vi to node vj flows into port pk,l, otherwise 0.
Variables O and I are utilized for modeling and satisfy-
ing the bandwidth and latency constraints on the various
communication traces.

Derived Variables: We define the following derived vari-
ables.
• Variable for the total traffic flowing out of a port: Let
BOk,l be a variable that represents the total traffic flowing
out of port pk,l. BO can be derived as follows.

BOk,l =
∑

∀em={vi,vj}∈E

ω(em) ∗ Oi,j,k,l

• Variable for the total traffic flowing into a port: Let BIk,l

be a variable that represents the total traffic flowing into
port pk,l. BI can be derived as follows.

BIk,l =
∑

∀em={vi,vj}∈E

ω(em) ∗ Ii,j,k,l

• Variable for flow of traffic on a link: Let Zi,j,k,l,m,n be a
{0, 1} variable that is 1 if traffic (i, j) leaves port l of router

k, and port l of router k is connected to port n of router
m. Hence, Zi,j,k,l,m,n can be represented as

Zi,j,k,l,m,n = Oi,j,k,l ×RRk,l,m,n

The non-linear equation can be easily linearized by the fol-
lowing rule.

Oi,j,k,l + RRk,l,m,n ≥ 2 ×Zi,j,k,l,m,n

Oi,j,k,l + RRk,l,m,n ≤ Zi,j,k,l,m,n + 1

B.2 Objective Function

The objective is to minimize the power consumption of
the NoC due to the cumulative traffic flowing through in-
put and output ports, respectively of all the routers. The
objective function can be expressed mathematically as fol-
lows:

Minimize (PR + PL)

where

PR = Ψi ·
∑

∀ri∈R

∑

∀pi,j

BIi,j + Ψo ·
∑

∀ri∈R

∑

∀pi,j

BOi,j

PL = ΨL





∑

i,j,k,l,m,n

ω(i, j) · RDk,m · Zi,j,k,l,m,n+

∑

i,j,k,l

NDi,k · ω(i, j) · NRi,k,l+

∑

i,j,k,l

NDj,k · ω(i, j) · NRj,k,l





where Ψi and Ψo are weights that denote the power con-
sumed per Mbps of traffic flowing in the input and output
directions, respectively, for any port of a router in the NoC,
and ΨL is the link power per unit length per Mbps, RDk,m

denotes the distance between routers k and m, and NDi,k

denotes the distance of node i from router k.

B.3 Constraints

The following constraints are formulated.
• Port capacity constraint: The bandwidth usage of an in-
put or output port should not exceed its capacity. There-
fore,

∀i ∈ R,∀pi,j ,BIi,j ≤ Ω,BOi,j ≤ Ω

• Port-to-port mapping constraint: A port can be mapped
to one node, or to any one port that belongs to a different
router:

∀pi,j ,
∑

∀rk∈R,k 6=i

∑

∀pk,l

RRk,l,i,j +
∑

∀vm∈V

NRm,i,j ≤ 1

∀pi,j ,∀rk ∈ R, k 6= i,RRk,l,i,j = RRi,j,k,l

The first constraint above is an inequality because it is
possible that a port may not be mapped to any other port
or node. The second equation models the symmetry of the
variable RR.
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• Node-to-port mapping constraint: A node should be
mapped exactly to one port. Therefore,

∀vi ∈ V,
∑

∀rk∈Ri

∑

∀pk,l

NRi,k,l = 1

• Traffic routing constraints: The traffic routing con-
straints discussed below ensure that for every ek =
(vi, vj) ∈ E, there exists a path p ={(vi, ri),
(ri, rj), . . . (rk, vj)} in T .
1. If a node is mapped to a port of a router, all traffic

emanating from that node has to enter that port. Similarly,
all traffic terminating at that node should leave from that
port. Thus, for each router rk, ∀pk,l, and ∀(vi, vj) ∈ E, we
require

Ii,j,k,l ≥ NRi,k,l, Oi,j,k,l ≥ NRj,k,l

2. If a node is mapped to a port of a router, no traffic
from any other node can either enter or leave that port.
Thus, ∀{vi, vj} ∈ E,∀vm ∈ V,m 6= i,m 6= j,∀pk,l :

NRm,k,l + Ii,j,k,l ≤ 1, NRm,k,l + Oi,j,k,l ≤ 1

3. If a traffic enters a port of the router, it should not
enter from any other port of that router. Similarly, if a
traffic leaves a port of a router, it should not leave from
any other port of that router. This constraint ensures that
the traffic does not get split across multiple ports. Thus,
for each router rk, and ∀(vi, vj) ∈ E,

∑

∀pk,l

Ii,j,k,l ≤ 1,
∑

∀pk,l

Oi,j,k,l ≤ 1

4. If a traffic enters a port of a router, it has to leave
from exactly one of the other ports of that router. In the
same way, if a traffic leaves a port of a router, it must have
entered from exactly one of the other ports of that router.
This constraint ensures the conservation of flow of traffic.
Hence, for each router rk, ∀pk,l, and ∀(vi, vj) ∈ E,

∑

∀pk,m,m 6=l

Oi,j,k,m ≥ Ii,j,k,l

∑

∀pk,m,m 6=l

Ii,j,k,m ≥ Oi,j,k,l

5. If two ports of different routers are connected, traf-
fic leaving from one port should enter the other, and
vice versa. For example, if pk,l and pm,n are connected,
RRk,l,m,n will be 1. Therefore, a traffic Oi,j,m,n leaving
port n of router rm should enter port l of router rk. There-
fore, Ii,j,k,l should be set to 1. Similarly, if Ii,j,k,l = 1,
Oi,j,m,n should be set to 1. Therefore, for each pair of
routers {rk, rm}, k 6= m, ∀pk,l,∀pm,n and, ∀(vi, vj) ∈ E,

RRk,l,m,n + Ii,j,k,l −Oi,j,m,n − 1 ≤ 0

RRk,l,m,n − Ii,j,k,l + Oi,j,m,n − 1 ≤ 0

6. If two ports of different routers are connected, a traffic
can leave exactly one of the two ports. Similarly, a traffic

v1

R

R
h = 1

(A)

(B)

(C)
Sink nodes

h = n + 1

h = n

R R

R

R

R
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R
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Fig. 15. Adding router to increase number of traffic

can enter only one of the two ports. For example, if pk,l

and pm,n are connected, for any traffic (vi, vj) ∈ E, Ii,j,m,n

and Ii,j,k,l cannot be simultaneously 1. Similarly, Oi,j,m,n

and Oi,j,k,l cannot be simultaneously 1. Thus, for each pair
of routers {rk, rm}, k 6= m, ∀(vi, vj) ∈ E,∀pk,l,∀pm,n

RRk,l,m,n + Ii,j,k,l + Ii,j,m,n − 2 ≤ 0

RRk,l,m,n + Oi,j,k,l + Oi,j,m,n − 2 ≤ 0

7. If a traffic enters a port of a router, that port must
be mapped to a node or to a port of a different router.
Therefore, if Ii,j,k,l is 1 for some traffic (vi, vj) ∈ E, some
NRi,k,l should be 1 or, some RRm,n,k,l should be 1 where
pm,n exists. Similarly, if a traffic leaves a port of a router,
that port must be mapped to a node, or to a port of a
different router. Therefore, if Oj,i,k,l is 1 for some traffic
{vj , vi} ∈ E, some NRi,k,l should be 1 or, some RRm,n,k,l

should be 1 where pm,n exists. The constraints can be mod-
eled as follows. For each router rk, ∀pk,l, and ∀{vj , vi} ∈ E

NRj,k,l +
∑

∀rm∈R

∑

∀pm,n

RRk,l,m,n ≥ Ij,i,k,l

NRi,k,l +
∑

∀rm∈R

∑

∀pm,n

RRk,l,m,n ≥ Oj,i,k,l

• Latency constraint: The latency constraint refers to the
maximum number of hops that is allowed to route the traf-
fic from a source node to a sink node. For example, a la-
tency of 2 means that the traffic can pass through at most
two routers. The latency constraint is modelled as follows:

∀ek = {vi, vj} ∈ E,
∑

∀rkR

∑

∀pk,l

Oi,j,k,l ≤ σ(ek)

Latency constraint of 1 is a special case in which no router
to router connections are allowed. Therefore, for latency
constraint of 1, all previous constraints pertaining to router
to router connections can be removed. The imposition of
latency constraint affects the feasibility of a NoC archi-
tecture. Latency and the number of ports in the router
architecture are related by the following lemma.

Lemma: If the router architecture has η ports per router,
and σ is the maximum latency constraint on any edge, (i.e
∀ek ∈ E, σ(ek) ≤ σ), a NoC topology is not possible if for
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any node, the total number of edges entering and leaving
the node is more than (η − 1)σ.
Proof: Without loss of generality, we will prove the lemma
for multiple traffic traces originating from one source node,
and ending at multiple respective sink nodes. As shown in
Figure 15, the source node is denoted by an unfilled cir-
cle, the routers are denoted by filled square boxes, and
the sink nodes are denoted by filled circles that form the
leaves of the tree. We will prove our lemma by mathemat-
ical induction on σ. For simplicity, the proof assumes that
bandwidth constraints are not violated.
Base case: Let σ = 1. In this case, all sink nodes have
to be mapped to ports of the router to which the source
node is mapped. As shown in Figure 15(A), the resulting
architecture can be visualized as a η-ary tree with height 1.
Since one port is taken by the source node, the maximum
number of ports available for sink nodes is given by:

numtraces1 = η − 1

Induction hypothesis: Suppose the assumption holds
for σ = σn. Therefore, the maximum number of traces is
given by:

numtracesn = (η − 1)σn

The resulting architecture is shown in Figure 15(B). The
architecture is an η-ary tree of height σn, and the maximum
number of traces is given by the number of leaf nodes in
the tree ((η − 1)σn).

Proof for σn +1: An η-ary tree with height σn +1 can be
formed from an η-ary tree with height σn by introducing a
router at each leaf node. As shown in Figure 15(C), intro-
duction of a router at a leaf node is equivalent to routing
traffic from source to the various sink nodes in σn +1 hops.
In a tree with height σn, each leaf node can be replaced by
a router, thus increasing the number of leaf nodes in a tree
with height σn +1 by η− 1. Therefore, when all leaf nodes
in the σn-height tree are replaced by routers, the maximum
number of traces that can be mapped in the σn + 1 tree is
given by:

numtracesn+1 = (η − 1) ∗ (η − 1)σn = (η − 1)σn+1

Q.E.D

IV. Clustering based heuristic technique

The MILP formulation for interconnection topology and
route generation is constrained by exponentially increasing
solution times for large communication trace graphs. This
section presents a clustering based heuristic technique for
reducing the solution times. The clustering based heuristic
technique is executed after the layout has been generated.
The overall approach is shown in Figure 16.

The first stage is to form clusters of nodes. The sizes
of the clusters are constrained by the maximum number
of nodes in the clusters. This information is specified by
the designer. We utilize an algorithm by Johnson et al.
[55] [56] to form our clusters. For each edge e ∈ E, the
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Fig. 16. Clustering based approach

clustering algorithm assigns a distance metric to the edge
given by

DFe =
σ2

e

ωe

As discussed before, since it is more difficult to satisfy la-
tency compared to bandwidth, we assign a higher weight to
latency. Two communicating nodes that have low latency
and high bandwidth are close to each other in terms of the
distance metric, and are placed in the same cluster.

Once the clusters have been formed, for every commu-
nication trace that is cut across a cluster boundary, two
dummy nodes are added to the respective clusters. If two
edges share either a source or sink node, then only two
dummy nodes are introduced instead of four. For example,
in Figure 16 the top two edges that are cut share a com-
mon source in the left hand side cluster. Hence, only two
dummy nodes (that are labelled as “A” in the figure) are
introduced. The latency constraint on the original com-
munication trace is split in half across the edges attached
to the pair of dummy nodes. The bandwidth constraint is
duplicated on the edges. The MILP formulation for topol-
ogy design is then utilized to generate the partial solution
for each cluster. In the figure, we assume that the routers
have four ports, and are on the four sides of the rectangle.
The full topology is generated from the partial solution by
adding physical links between ports of routers that are in
neighboring clusters, and are attached to identically named
dummy nodes. For example, in Figure 16, routers R1 and
R3 that are in different clusters are attached together with
physical link since they both have a dummy node named
“A” assigned to a port.

V. Results

In this section, we present the results obtained by execu-
tion of our techniques on multimedia benchmark applica-
tions. In Section V-A, we discuss the benchmark applica-
tions, in Section V-B, we discuss the experimental setup,
and in Section V-C we present and discuss the results.

A. Benchmark applications

We generated custom NoC architectures for four multi-
media benchmarks namely, mp3 audio encoder, mp3 au-
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Graph Graph ID Nodes Edges

mp3 decoder G1 5 3
263 encoder G2 7 8
mp3 encoder G3 8 9
263 decoder G4 9 8

263 enc mp3 dec G5 12 12
mp3 enc mp3 dec G6 13 12
263 dec mp3 dec G7 14 16
263 enc mp3 enc G8 15 17
263 enc 263 dec G9 16 16
263 dec mp3 enc G10 17 17

TABLE I

Graph Characteristics

Node 263 dec mp3 dec 263 enc mp3 dec mp3 enc mp3 dec
0 VLD ME FP
1 IQ DCT FFT
2 IDCT FP FILTER
3 MC IDCT MDCT
4 ADD MC ITER. ENC.1
5 MEM 1 VLE ITER. ENC.2
6 MEM 2 MEM BIT RES 1
7 HUFF 1 BIT RES 1 BIT RES 2
8 HUFF 2 BIT RES 2 BIT RES 3
9 BIT RES 1 IMDCT BIT RES 4
10 BIT RES 2 SUM IMDCT
11 IMDCT BUF SUM
12 SUM BUF
13 BUF

TABLE II

Node descriptions

dio decoder, H.263 video encoder, and H.263 video de-
coder algorithms. In addition, we obtained results for six
other benchmarks by mapping combinations of two appli-
cations from the above mentioned benchmarks simultane-
ously. The benchmarks are shown in Table I. The com-
munication trace graphs for the benchmarks were obtained
from the work presented by Hu et al. [49].

B. Experimental setup

In our experimental setup, we obtained results for router
architectures with 5 and 4 ports, respectively. As dis-
cussed in Section I-A, the power consumption in 100
nm technology, for the input and output port was es-
timated to be 328nW/Mbps and 65.5nW/Mbps, respec-
tively. The link power consumption was estimated to be
79.6nW/Mbps/mm. We utilized the Xpress-MP optimizer
[57] to solve the MILP problems. The solver was config-
ured with a timeout of 8 hours for the floorplanning stage,
and a timeout of 12 hours for the NoC architecture genera-
tion stage. If the solver failed to find the optimal solution,

Graph Area ratio Runtime (sec)
(Mesh over Custom) Custom Mesh

G1 1.26 < 1 < 1
G2 1.09 2 13
G3 1.21 17 56
G4 1.45 9 31
G5 1.74 507 9987
G6 1.56 13376 28800(t.o)
G7 1.39 2383 13746
G8 1.44 28800(t.o) 28800(t.o)
G9 1.36 28800(t.o) 28800(t.o)
G10 1.38 28800(t.o) 28800(t.o)

TABLE III

Results for Floorplanning

No. Graph Power (µW ) Routers
Cluster Mesh Ratio Cluster Mesh Ratio

1 G1 2.622 7.363 2.80 1 5 5
2 G2 108.3 291.4 2.69 2 7 3.5
3 G3 5.7 10.51 1.84 2 8 4
4 G4 5.722 12.51 2.18 3 9 3
5 G5 110.4 273.7 2.47 4 12 3
6 G6 8.157 18.02 2.21 5 13 2.6
7 G7 8.535 22.27 2.60 5 14 2.8
8 G8 155.2 277.0 1.78 5 15 3
9 G9 115.6 296.7 2.56 5 16 3.2
10 G10 11.54 28.63 2.15 6 17 2.8

TABLE V

Comparison of Clustering, and Mesh

No. Graph Power (µW ) Routers
Cluster QNoC Ratio Cluster QNoC Ratio

1 G1 2.622 2.627 1.00 1 2 2
2 G2 108.3 216.1 1.99 2 4 2
3 G3 5.7 6.368 1.11 2 4 2
4 G4 5.722 6.453 1.12 3 3 1
5 G5 110.4 244.9 2.21 4 6 1.5
6 G6 8.157 12.35 1.51 5 5 1
7 G7 8.535 22.37 2.62 5 6 1.2
8 G8 155.2 155.7 1.00 5 5 1
9 G9 115.6 352.4 3.04 5 7 1.4
10 G10 11.54 25.86 1.95 6 7 1.1

TABLE VI

Comparison of Clustering, and QNoC

the best available solution generated within the timeout
criterion was accepted. We obtained best results when:
• the minimum distance between two routers was set to
one half the length of the maximum sized node,
• the distance of a node from the router to which it can be
mapped was set to the length of the maximum sized node,
• the sizes of the clusters were limited to 9 nodes for the
clustering based heuristic.
All results were obtained on a 950 MHz SPARC processor.

C. Results and discussion

In this section, we present and discuss the results for
the floorplanning, and the topology generation and routing
stages.

C.1 Floorplanning stage

Figures 17, 22, and 27 present the communication trace
graphs for 263 dec-mp3 dec, 263 enc-mp3 dec, and mp3 enc-
mp3 dec benchmarks, respectively. The edges of the graphs
are annotated with bandwidth requirement in Kbps. The
node descriptions are depicted in Table II. Figures 18, 23,
and 28 present the corresponding floorplans obtained by
executing our MILP based floorplanner on the benchmarks,
for custom architectures. Figures 19, 24, and 29 present
the corresponding floorplans for mesh architectures. The
floorplanner places highly communicating nodes close to
each other. For example, in Figure 18, nodes 1 and 2 that
have high communication bandwidth, are placed next to
each other.

Table III presents the ratio of the area consumption of
mesh based topologies over that of custom topologies, and
the runtimes of the floorplanning stage for custom and
mesh topologies. On an average, the mesh topology con-
sumed 1.38 times the area consumed by custom topology.
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No. No. Graph No of Power (µW ) Routers Runtime (secs)
Ports Clusters MILP CLUSTER Ratio MILP CLUSTER Ratio MILP CLUSTER

1 5 G1 1 2.622 2.622 1 1 1 1 < 1 < 1
2 5 G2 1 108.3 108.3 1 2 2 1 330 330
3 5 G3 1 5.7 5.7 1 2 2 1 1720 1720
4 5 G4 1 5.722 5.722 1 3 3 1 2318 2318
5 5 G5 2 179.5 110.9 0.61 5 4 0.8 41200 (t.o) 1103
6 5 G6 2 8.635 8.157 0.94 5 5 1 41200 (t.o) 2099
7 5 G7 2 11.91 8.535 0.71 5 5 1 41200 (t.o) 35522
8 5 G8 2 170.7 155.2 0.90 5 5 1 41200 (t.o) 1559
9 5 G9 2 245.4 115.6 0.47 7 5 0.7 41200 (t.o) 35467
10 5 G10 2 15.52 11.54 0.74 7 6 0.8 41200 (t.o) 1540

11 4 G1 1 2.631 2.631 1 2 2 1 < 1 < 1
12 4 G2 1 138.0 138.0 1 4 4 1 347 347
13 4 G3 1 5.944 5.944 1 3 3 1 1206 1206
14 4 G4 1 5.722 5.722 1 4 4 1 22222 22222
15 4 G5 2 194.6 140.7 0.72 5 5 1 41200(t.o) 2502
16 4 G6 2 10.94 12.47 1.12 6 6 1 41200(t.o) 41200(t.o)
17 4 G7 2 13.90 8.664 0.62 6 6 1 41200(t.o) 36733
18 4 G8 2 158.6 209.4 1.31 7 7 1 41200(t.o) 41200(t.o)
19 4 G9 2 241.3 147.2 0.61 7 7 1 41200(t.o) 41200(t.o)
20 4 G10 2 17.22 11.97 0.69 8 8 1 41200(t.o) 36544

TABLE IV

Comparison of MILP, and Clustering

No. No. Graph Lower bound Cluster Ratio
Ports (µW ) (µW )

MILP Cluster (C) (C/ML) (C/CL)
(ML) (CL)

1 5 G1 2.622 2.622 2.622 1 1
2 5 G2 108.3 108.3 108.3 1 1
3 5 G3 5.7 5.7 5.7 1 1
4 5 G4 5.722 5.722 5.722 1 1
5 5 G5 93.26 110.9 110.9 1.18 1
6 5 G6 5.50 8.15 8.15 1.48 1
7 5 G7 8.10 8.53 8.535 1.05 1
8 5 G8 116.9 155.2 155.2 1.32 1
9 5 G9 90.74 115.6 115.6 1.27 1
10 5 G10 10.97 11.54 11.54 1.05 1

11 4 G1 2.631 2.631 2.631 1 1
12 4 G2 138.0 138.0 138.0 1 1
13 4 G3 5.944 5.944 5.944 1 1
14 4 G4 5.722 5.722 5.722 1 1
15 4 G5 121.4 140.7 140.7 1.15 1
16 4 G6 8.20 10.4 12.47 1.52 1.19
17 4 G7 6.88 8.66 8.664 1.25 1
18 4 G8 102.1 134.3 209.4 2.05 1.55
19 4 G9 80.33 113.7 147.2 1.83 1.29
20 4 G10 9.01 11.97 11.97 1.32 1

TABLE VII

Comparison of Clustering final solution with MILP and

Clustering lower bounds

Since the cores of the mesh are aligned in a grid, mesh
topologies occupy more area compared to custom topolo-
gies. In the table, “t.o” denotes that the solver did not
converge to an optimal solution within the timeout period
of 8 hours. The longer running time for mesh may be at-
tributed to the extra constraints required in the formula-
tion to generate mesh topologies.

C.2 Topology generation and routing stage

Table IV compares the results obtained for the MILP and
clustering based techniques, respectively. In the table, col-
umn 1 gives the serial number, column 2 denotes the given
router architecture, column 3 specifies the benchmark ap-
plication, column 4 denotes the number of clusters for each
benchmark, columns 5 and 6 present the total power con-
sumption of solutions produced by MILP formulation, and
the clustering technique respectively, column 7 gives the ra-
tio of power consumption of the clustering technique solu-
tions over the MILP solutions, columns 8 and 9 present the

router requirements of MILP and clustering techniques, re-
spectively, column 10 denotes the ratio of routers required
by the clustering solutions over the MILP solutions, and fi-
nally columns 11 and 12 denote the run times of the MILP
and clustering techniques, respectively. In the table, “t.o”
denotes that the solver did not converge to an optimal so-
lution within the timeout period of 12 hours.

The clustering technique performed better than MILP
for the timeout criterion of 12 hours. Due to its smaller
size compared to the benchmark application, the solver
was able to generate optimal solutions for the clusters. On
the other hand, the solver timed out for many benchmarks
when only the MILP was invoked. On an average, the clus-
tering technique produced results that consumed only 85%,
and 96% of the power and number of routers, respectively,
in comparison to MILP.

The custom topologies of the three benchmarks (263 dec-
mp3 dec, 263 enc-mp3 dec, and mp3 enc-mp3 dec bench-
marks) produced by clustering based techniques are shown
in Figures 20, 25, and 30, respectively, for 5 port router
architectures, and Figures 21, 26, and 31, respectively, for
4 port router architectures.

We also compared our approach of synthesizing cus-
tomized NoC designs for application specific SoC architec-
tures against solutions with mesh based NoC topologies.
The floorplans for custom and mesh architectures were ob-
tained by invoking the MILP solver on the formulation pre-
sented in Section III-A. Once the floorplan was obtained,
we obtained the power and router consumption of a regu-
lar mesh topology by considering the shortest distance in
terms of the number of routers from the source node to the
sink node for each trace. The value thus calculated serves
as a lower bound on the power consumption of the regular
mesh topology. Similarly, we also obtained the number of
routers and power consumption for the QNoC architecture
[44]. The QNoC architecture is identical to a mesh topol-
ogy except that it permits multiple cores to be attached to
routers that are on the periphery of the mesh. Tables V
and VI show the results of the comparative study for each
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Fig. 20. 5 port topology for
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Fig. 21. 4 port topology for
263 dec mp3 dec

benchmark application. The number of ports in the routers
was 5 in both cases. The number of nodes in the commu-
nication trace graph place a lower bound on the number of
routers in both regular mesh and QNoC based topologies.
The regular mesh based topology on an average consumes
over 2.3 times more power and requires 3.5 times as many
routers as a customized topology. The QNoC based topol-
ogy on an average consumes 1.75 times more power and
requires 1.4 times as many routers as a customized topol-
ogy. The pre-designed physical connections in both the
mesh based topologies force the communication traces to
pass through more routers, thus, leading to the increased
power consumption.

We compared the final solution generated by the clus-
tering based heuristic with the theoretical lower bound on
the power consumption of the MILP and clustering based
formulations, respectively (see Table VII). We would like
to emphasize that for every graph for which the MILP for-
mulation resulted in a time out (rows 5-10 and 15-20), the
lower bound is strictly a theoretical value, and it denotes
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the best lower bound that was generated by the formula-
tion for a particular graph within the specified time. The
lower bound for the clustering based technique for a graph
is the summation of the lower bounds for the individual for-
mulations for different clusters of the same graph. On an
average for the larger graphs (rows 5-10 and 15-20) the final
result of the clustering based technique is 1.37 (standard
deviation of 0.31) and 1.08 (standard deviation of 0.17)
times of the lower bounds due to the MILP and cluster-
ing based formulations, respectively. Thus, the clustering
based heuristic generates results that are within 40 % of
the theoretical optimal lower bound.

We also evaluated the number of additional virtual chan-
nels that are required for the custom architectures synthe-
sized by our techniques. We found that for our set of ap-
plications, deadlock did not occur in any of the synthesized
designs. We next measured the maximum number of traces
flowing through any port of a router in the topology. This
value acts as an upper bound on the number of virtual
channels required in the design if a deadlock were to occur.
We found that for most of the cases the number of traces
were either 1 or 2. In only 5 (out of a total of 20) of the
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cases we had some ports that supported 3 traffic traces.
Warnakulasuriya et al. [58] show that the deadlock prob-
ability in irregular networks becomes negligible with three
virtual channels. Therefore, we can conclude that for the
multimedia benchmarks utilized in this paper the number
of additional virtual channels required after synthesis are
minimal.

VI. Discussion

Our techniques synthesize an application specific NoC
with an objective of minimizing the communication power
subject to the performance constraints. The techniques
account for both the physical link and router power con-
sumption. The techniques incorporate a system-level floor-
planning stage to calculate the link power accurately. As
demonstrated in the results section, the custom topologies
generated by our techniques perform better than both tra-
ditional mesh based and QNOC based NoC architectures in
terms of power and resource consumption. In the compar-
ative study we focussed on the power and resource require-
ment due to the interconnection architecture. The overall

advantage will be smaller if the power and area consump-
tion of the computation architecture is also included in the
comparison.

The discussion on router characterization (Section I-A)
assumed a particular router architecture with data width
of 32, 4 virtual channels at every port (2 for input and 2 for
output), depth of virtual channels at 8, a packet size of 256
bits, and that performed wormhole switching. However,
our techniques are not limited to the particular router ar-
chitecture. They are applicable for any router architecture
in which the input and output port power varies linearly
with bandwidth. We expect that these characteristics are
applicable to all other router architectures, and therefore
so are our techniques.

The discussion on the techniques and experimental re-
sults assumed that the NoC is designed with homogeneous
router architectures. However, the techniques can easily be
extended to heterogeneous router architectures. For exam-
ple, if the maximum number of ports in a router that is
available in the IP library are 8, the formulation for topol-
ogy generation can initially assume that all routers have 8
ports. Once the topology has been generated, additional
un-utilized ports can be eliminated from all the routers.

The technique requires that the router architecture be
characterized for its power consumption. During charac-
terization the router architecture has a certain number of
virtual channels (two in our case). The final number of
virtual channels might vary due to the possibility of dead-
locks. However, for the multimedia benchmarks utilized in
this paper, our techniques did not result in deadlocks for
any design. Further, only 25 % of the designs had routers
with more than 3 traces routed through a single port. This
number acts as an upper bound on the required number
of virtual channels to avoid a deadlock should it occur.
Further, even for generic NoC architectures increasing the
number of virtual channels results in diminishing perfor-
mance improvements. Therefore, the router architecture
can be characterized with a fixed number of virtual chan-
nels, and the deviation from the architecture is expected
to be minimal.

Although our objective functions are aimed at dynamic
power minimization, we do address router utilization. We
reduce the number of available routers at floorplanning
stage by eliminating redundant routers. At the intercon-
nection architecture design stage we reduce the number of
hops for each traffic trace and thereby utilizing minimum
number of routers.

Our techniques are aimed at application specific SoC
architectures where the computation elements demon-
strate well defined inter-core communication characteris-
tics. Consequently, the communication requirements can
be specified by a directed communication graph, and an op-
timized NoC topology with static routes can be designed
by utilizing our techniques. Our techniques do not cur-
rently address fault tolerant topologies. Automated design
techniques for fault tolerant topologies that support sta-
tic routing would be focus of future work. As we generate
custom topologies, adaptive routing techniques that can
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be readily applied to regular topologies cannot be easily
integrated into our architectures.

The NoC is designed after the computation architecture
has been finalized. Consequently, even before the NoC is
generated the bandwidth production and consumption re-
quirements of the various computation architecture cores
are known. Therefore, we assume that cores can produce
and consume the required bandwidth. The only require-
ment that we place on the NoC is that the unit router
input and output port should be able to consume and pro-
duce the required core bandwidth, respectively. In the case
that the computation architecture has a wide variation in
the bandwidth requirements, the designer can choose to
develop a NoC architecture with either average or worst
case communication traffic by specifying respective com-
munication trace graphs.

We have compared against known mesh based topolo-
gies (regular and QNoC) that have been utilized by others.
Regular mesh based topologies require the same number
of routers as there are cores. QNoC permits only routers
that are on the boundary of a mesh to be connected to
multiple cores. In the custom topologies generated by our
techniques multiple cores can be connected to routers. As
the power consumption of the unit routers are several times
that of the physical links, custom topologies optimize both
the power consumption and the latency of the NoC. This
advantage would diminish as the proportion of power con-
sumption of the physical links to the power consumption
of the routers increases.

The MILP based techniques do not generate an opti-
mal result in 12 hours for larger sized graphs. However,
the clustering based heuristic are able to generate results
is almost all cases (3 exceptions out of 20) in a reason-
able amount of time. Further, the overall results produced
by the clustering based technique were better than the
MILP results both in terms of power consumption (96%)
and router requirements (85%). Thus, the clustering based
technique is an effective heuristic for generating NoC de-
signs for larger SoC architectures with hundreds of nodes.
In our experiments we utilized a cluster size of 9 nodes. The
run time of the clustering based technique can be improved
by reducing the cluster size (to eight or seven nodes). Thus,
for a SoC with 100 components, our heuristic technique
would operate on about 12 clusters (of size 8) to generate
the overall NoC architecture.

Technology scaling will result in an increase in the static
power consumption due to the routers and dynamic power
consumption due to the physical links. Our techniques ac-
count for the contribution of physical links toward the to-
tal power consumption. Static power consumption can be
minimized by two techniques. First, router ports that do
not support any traffic traces can be eliminated from the
design. Thus, the final topology would consist of hetero-
geneous router architectures. Virtual channels are chief
contributors of leakage power in a router architecture [34].
Their contribution can be reduced by over 80 % by deploy-
ing run time power management schemes such as those
proposed by Chen et al. [34].

The formulation for floorplanning presented in Section
III-A does not address aspect ratios and orientations of
individual cores. At the floorplanning stage the contribu-
tion of the paper is in terms of a unique cost function that
addresses NoC specific constraints, and extensions for ad-
dressing mesh based layouts. Please refer to [52] [53] [54]
for more complete floorplanning formulations. All of these
formulations can be combined with the cost function pro-
posed in the paper to generate NoC specific layouts.

In nanoscale technologies, architectures are expected to
be inherently faulty. The traditional techniques of intro-
ducing redundancy to improve fault tolerance will prove
expensive in terms of leakage power as well as area. Novel
techniques for design of fault tolerant NoC is an open prob-
lem.

Our paper addresses the NoC design in isolation. Inte-
gration of computation architecture design with NoC syn-
thesis has the potential for larger power savings.

VII. Conclusion

In this paper, we defined the application specific NoC
synthesis problem and proposed linear programming based
solutions. We addressed the complexity of NoC synthe-
sis problem by dividing it into two stages namely, floor-
planning and interconnection network generation. We pre-
sented optimal MILP formulations for the two stages, and
presented a clustering based heuristic for the second stage
to reduce the run time of the formulation. We performed
extensive experimentation to validate the quality of our
techniques. The optimal MILP formulation timed out for
many benchmarks. On the other hand, our clustering based
technique was able to generate results with superior quality
in reasonable time. On an average, the clustering technique
consumed only 85% of the power and 96% of the router re-
sources respectively, compared to the corresponding results
generated by the MILP formulation. We also compared the
custom topologies synthesized by our technique with regu-
lar mesh and QNOC based interconnection networks. The
mesh and QNoC based topologies on an average consumed
2.3 and 1.75 times more power, and required over 3.5 and
1.4 times the router resources as compared to our custom
topologies, respectively.
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