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For a subset of verties S � V , we write Æ(S) for the set of edges with exatlyone endpoint inside S. If x 2 RjEj is a vetor indexed by the edges of a graphG = (V;E) and F � E is a subset of edges, we use x(F ) to denote the sum ofvalues of x on the edges in the set F , x(F ) =Pe2F xe.1.2 Previous work.The tree and tour over problems were introdued by Arkin, Hald�orsson and Has-sin [1℄. The motivation for their study omes from the lose relation of thetour over problem to vertex over, wathman route and traveling purhaserproblems. They provide fast ombinatorial algorithms for the weighted ver-sions of these problems ahieving approximation ratios 5.5 and 3.55 respetively(3.55 is slightly lower than their laim|the reason being the reent improve-ments in minimum Steiner tree approximation [8℄). For unweighted versionstheir best approximation ratios are 3 (tour over) and 2 (tree over), and theyalso show how to �nd a 3-approximate tree over in linear time. Finally, theygive approximation-preserving redutions to vertex over and traveling salesmanproblem, showing that tree and tour over are MAXSNP-hard problems.Our methods are similar to those used by Bienstok, Goemans, Simhi-Leviand Williamson [2℄, also referred to by Arkin et al. as a possible way of improvingtheir results; however, our algorithms were developed independently and were infat motivated primarily by the work of Carr, Fujito, Konjevod and Parekh [3℄on approximating weighted edge-dominating sets.1.3 Algorithm overview.Both our algorithms run in two phases. In the �rst phase we identify a subset ofverties, and then in the seond phase we �nd a walk or a tree on these verties.Very informally, the algorithms an be desribed as follows.(1) Solve the linear programming relaxation of the tour over (tree over) prob-lem.(2) Using the optimal solution to the linear program, �nd a set U � V , suhthat V n U indues an independent set.(3) Find an approximately optimal tour (tree) on U .Part (3) above redues to the invoation of a known algorithm for approxi-mating the minimum traveling salesman tour or the minimum Steiner tree.2 Tour over2.1 Linear program.We �rst desribe an integer programming formulation of tour over.



Let F denote the set of all subsets S of V suh that both S and V nS indueat least one edge of E,F = fS � V j E[S℄ 6= ;; E[V n S℄ 6= ;g:Note that if C is a set of edges that forms a tour over of G, then at least twoedges of C ross S, for every S 2 F . This observation motivates our integerprogramming formulation of tour over. For every edge e 2 E, let the integervariable xe indiate the number of opies of e inluded in the tour over. Weminimize the total weight of edges inluded, under the ondition that every utin F be rossed at least twie. In order to ensure our solution is a tour wealso need to speify that eah vertex has even degree; however, we drop theseonstraints and onsider the following relaxation.minXe2E exeXe2Æ(S)xe � 2 for all S 2 Fx 2 f0; 1; 2gjEj: (1)Note that sine the optimum tour may use an edge of G more than one, weannot restrit the edge-variables to be zero-one. However, it is not diÆult tosee that under a nonnegative weight funtion the minimal solution will neveruse an edge more than twie. This follows sine an Eulerian tour T1 on a subsetU � V of verties may be transformed into an Eulerian tour T2 on U suh that(1) no edge is used in T2 more times than in T1 and (2) no edge is used in T2more than twie.Replaing the integrality onstraints by0 � x � 2;we obtain the linear programming relaxation. We use ToC(G) to denote theonvex hull of all vetors x satisfying the onstraints above (with integralityonstraints replaed by upper and lower bounds on x).To show that ToC(G) an be solved in polynomial time we appeal to theellipsoid method [7℄ and onstrut a separation orale. We interpret a givenandidate solution x as the apaities on the edges of the graph G. For eah pairof edges e1; e2 2 E we ompute the minimum apaity ut in G that separatesthem. The laim is that x is a feasible solution i� for eah pair of edges e1; e2 2 Ethe minimum-apaity e1; e2-ut has value at least 2. Clearly, if x is not a feasiblesolution then our proedure will �nd a ut of apaity less than 2 having at leastone edge on either side. On the other hand if our proedure returns a ut ofvalue less than 2 then x annot be feasible.Notie that the dual of (ToC(G)) �ts into the paking framework and theabove orale enables us to use fast ombinatorial paking algorithms [4, 5℄. Thatis, we avoid using the ellipsoid method, reduing the time omplexity but at theost of losing a (1 + �)-fator in the approximation guarantee.



2.2 The subtour polytope.Let G = (V;E) be a graph whose edge-weights satisfy the triangle inequality:for any u, v, and w 2 V , uv + vw � uw:The subtour polytope ST(G) is de�ned asST(G) = fx 2 [0; 1℄jEj j x(Æ(S)) � 2 8S � V; ; 6= S 6= V;and x(Æ(fvg)) = 2 8v 2 V g:In fat, the upper-bound onstraints x � 1 are redundant andST(G) = fx � 0 j x(Æ(S)) � 2 8S � V; ; 6= S 6= V;and x(Æ(fvg)) = 2 8v 2 V g:2.3 The parsimonious property.Let G = (V;E) be a omplete graph with edge-weight funtion . For everypair of verties i, j 2 V , let a nonnegative integer rij be given. The survivablenetwork design problem onsists in �nding the minimum-weight subgraph suhthat for every pair of verties i, j 2 V , there are at least rij edge-disjoint pathsbetween i and j. A linear programming relaxation of the survivable networkdesign problem is given byminX2E exeXe2Æ(S)xe � maxij2Æ(S) rij for all S � V; ; 6= S 6= Vx � 0: (2)Goemans and Bertsimas [6℄ prove the following.Theorem 1. If the weight funtion  satis�es the triangle inequality then forany D � V the optimum of the linear program (2) is equal to the optimum ofminX2E exeXe2Æ(S)xe � maxij2Æ(S) rij for all S � V; ; 6= S 6= VXe2Æ(fvg) xe = maxj2V nfvg rvj for all v 2 Dx � 0: (3)



2.4 Algorithm.We are now ready to state our algorithm for tour over.(1) Let x� be the vetor minimizing x over ToC(G).(2) Let U = fv 2 V j x�(Æ(fvg)) � 1g.(3) For any two verties u, v 2 U , if uv 62 E, let uv be the weight of the shortestu-v path in G.(4) Run Christo�des' heuristi to �nd an approximate minimum traveling sales-man tour on U .The algorithm outputs a tour on U . Sine U is a vertex over of G, this touris in fat a tour over of G.We note that there are some trivial ases whih our algorithm will not handle.However, they an be proessed separately, and we briey mention them here.If the input graph is a star, the entral node is a solution of weight zero. Ifthe input graph is a triangle, doubling the heapest edge gives us an optimalsolution. All other ases an be handled by our algorithm.2.5 Performane guarantee.Theorem 2. Let x� be the vetor minimizing x over ToC(G) and U = fv 2V j x�(Æ(fvg)) � 1g: Let F denote the (omplete) graph with vertex-set U andedge-weights  as de�ned by shortest paths in G. Thenminfy j y 2 ST(F )g � 2minfx j x 2 ToC(G)g:Proof. Let y = 2x�. Then, y is feasible forA = fx � 0 j x(Æ(fvg)) � 0 8v 2 V n Ux(Æ(fug)) � 2 8u 2 Ux(Æ(S)) � 2 8S � V; S \ U 6= ;; U n S 6= ;; ; 6= S 6= Vx(Æ(S)) � 0 8S � V n U; S 6= ;g:Notie that A orresponds to the survivable network polytope (2) with require-ment funtion ruv = �2 ; u; v 2 U0 ; otherwise.Now letB0 = fx � 0 j x(Æ(fvg)) = 0 8v 2 V n Ux(Æ(fug)) = 2 8u 2 Ux(Æ(S)) � 2 8S � V; S \ U 6= ;; U n S 6= ;; ; 6= S 6= Vx(Æ(S)) � 0 8S � V n U; S 6= ;g:By the parsimonious property (Theorem 1),minfx j x 2 Ag = minfx j x 2 B0g:



We de�ne B = fx � 0 j x(Æ(fvg)) = 0 8v 2 V n Ux(Æ(fug)) = 2 8u 2 Ux(Æ(S)) � 2 8S � U; ; 6= S 6= Ug;that is, B is the subtour polytope ST (F ). We next show that B = B0, fromwhih it follows that minfx j x 2 Bg = minfx j x 2 Ag: (4)Claim. B = B0.Proof. It is lear that B0 � B. Let x 2 B. Clearly, for ; 6= S � V n U we havex(Æ(S)) � 0. Now, onsider some set S with a requirement of 2. We show thatx(Æ(S)) = x(Æ(S \ U)). The laim then follows from x 2 B.In the following we use �U to denote V n U . We also use U : V to denotethe set of edges with exatly one end point in eah of U and V , that is, U :V = fuv 2 E j u 2 U; v 2 V g. Notie that we an express the di�erenex(Æ(S)) � x(Æ(S \ U)) in the following wayx(S \ �U : �S \ �U) + (5)x(S \ �U : �S \ U)� (6)x(S \ �U : S \ U): (7)Sine x 2 B we know that x(Æ(v)) = 0 for all v 2 �U . Hene the terms (5), (6),and (7) above evaluate to zero. utThe right-hand side of (4) is equal to minfx j x 2 ST(F )g. Now, puttingtogether all of the above, we haveminfx j x 2 ST(F )g = minfx j x 2 Bg = minfx j x 2 Ag� y = 2x� = 2minfx j x 2 ToC(G)g:The �rst equality here follows from the de�nition of B. The seond equality isequation (4), and the inequality is true beause y is feasible for A. The �nal twoequalities follow from the de�nitions of y and x�. utWolsey [11℄ and Shmoys and Williamson [9℄ prove the following theorem.Theorem 3. Let G = (V;E) be a graph with edge-weight funtion  satisfyingthe triangle inequality. Then the weight of the traveling salesman tour on Goutput by Christo�des' algorithm is no more than 32 minfx j x 2 ST (G)g.From Theorems 2 and 3, and the fat that minfx j x 2 ToC(G)g is a lowerbound on the weight of an optimal tour over, it follows that the approximationratio of our algorithm for tour over an be upper-bounded by 3.Corollary 1. The algorithm above outputs a tour over of weight no more than3 times the weight of the minimum tour over.



3 Tree over3.1 Bidireted formulation.For tree over, we follow essentially the same proedure as for tour over, withone di�erene. We use a bidireted formulation for the tree over. That is, we �rsttransform the original graph into a direted graph by replaing every undiretededge uv by a pair of direted edges (u ! v); (v ! u) eah having the sameweight as the original undireted edge. We then pik one vertex as the root, andsearh for a minimum-weight branhing whih also overs all the edges of thegraph. We denote this direted graph by �!G = (V;�!E ).We do not know whih vertex to pik as the root. However, we an simplyrepeat the whole algorithm for every possible hoie of the root, and pik thebest solution. It is easy to see that suh a branhing has a diret orrespondenewith a tree over in the original undireted graph, having the same weight.3.2 Linear program.For a �xed root r, de�ne F to be the set of all subsets S of V n frg suh that Sindues at least one edge of �!E ,F = fS � V n frg j �!E [S℄ 6= ;g:If C is a set of edges forming a tree over of G and ontaining r, then let�!C denote the branhing obtained by direting all edges of C towards the rootr. Now for every S 2 F , �!C must ontain at least one edge leaving S. We useÆ+(S) to denote the set of direted edges leaving the set S. Hene we have thefollowing IP formulation.minXe2�!E exeXe2Æ+(S)xe � 1 for all S 2 Fx 2 f0; 1gj�!E j: (8)Replaing the integrality onstraints byx � 0;we obtain the linear programming relaxation. We use TrC(�!G ) to denote theonvex hull of all vetors x satisfying the onstraints above.



3.3 Quasi-bipartite bidireted Steiner tree polytope.A graph G = (V;E) on whih an instane of the Steiner tree problem is givenby speifying the set R � V of terminals is alled quasi-bipartite if S = V nR in-dues an independent set. Rajagopalan and Vazirani [10℄ give a 32 -approximationalgorithm for the quasi-bipartite Steiner tree problem using a bidireted ut re-laxation.For a spei� hoie of a root vertex r, the quasi-bipartite bidireted Steinertree polytope QBST(��!G[R℄) is de�ned asQBST(��!G[R℄) = fx 2 [0; 1℄j�!E j j x(Æ+(S)) � 1 8S � V n frg; S \ R 6= ;g:3.4 Algorithm.We are now ready to state our algorithm for tree over.(1) For every vertex r 2 V , let x�r be the vetor minimizing x over TrC(�!G )with r as the root.(2) Let U = fv 2 V j x�r(Æ+(fvg)) � 12g.(3) For any two verties u, v 2 U , if uv 62 E, let uv be the weight of the shortestu-v path in G.(4) Run the Rajagopalan-Vazirani algorithm to �nd an approximate minimumSteiner tree on �!G , with U as the set of terminals, and all this Tr.(5) Pik the heapest suh Tr.Note that we are able to solve the linear program in step (1) in essentiallythe same way as the tour over LP, appealing to the ellipsoid method and using amin-ut omputation as a separation orale. Trivial ases exist for this problemtoo; they an be handled similar to the way we handle the tour over trivialases. The algorithm initially yields a branhing in the bidireted graph. Wemap this in the obvious way to a set of edges in the original undireted graph.Some of the edges in this set may be redundant sine we were working on themetri ompletion of the direted graph; we prune the solution to get a treewithout any inrease in weight.The algorithm outputs a tree whih spans U (and possibly other verties).Sine U is a vertex over of G, this tree is in fat a tree over of G.3.5 Performane guarantee.Theorem 4. Let x� be the vetor minimizing x over TrC(�!G ) and U = fv 2V j x�(Æ+(fvg)) � 12g: Thenminfy j y 2 QBST(��!G[U ℄)g � 2minfx j x 2 TrC(�!G )g:



Proof. Consider an edge �!e = uv 2 �!E . Sine x� 2 TrC(�!G ), we have thatx�(Æ+(fu; vg)) � 1. Hene, either x�(Æ+(fug)) � 12 or x�(Æ+(fvg)) � 12 , and Uis a vertex over of G. Note that V n U is an independent set beause for allu; v 2 V n U , we have x(Æ+(u)) < 12 and x(Æ+(v)) < 12 so that uv =2 E.Now onsider the vetor y = 2x�. Clearly y = 2x�. Also learly y 2QBST(��!G[U ℄). Hene if y� is the minimizer of fy j y 2 QBST(��!G[U ℄)g, theny� � y = 2x�. utRajagopalan and Vazirani[10℄ prove the following.Theorem 5. Let G = (V;E) be a graph with edge-weight funtion  satisfyingthe triangle inequality. Let V = R + S be a partition of the vertex set suhthat G has no edges both of whose end points are in S. Then we an �nd inpolynomial time a Steiner tree spanning R of weight no more than 32 minfx j x 2QBST (��!G[R℄)g.From Theorems 4 and 5 it follows that the approximation ratio of our algo-rithm for tree over an be upper-bounded by 3.Corollary 2. The algorithm above outputs a tree over of weight no more than3 times the weight of the minimum tree over.4 Conlusion4.1 Gap examples: linear program, algorithm.We do not have examples where the worst-ase performane of our algorithm isatually ahieved. However, we do have examples where the ratio of our solutionto the LP solution is equal to the performane guarantee.For the tour over problem, onsider the unit omplete graph. It is easy tosee that an optimal LP solution is obtained by setting xe = 1n�2 for eah edge inthe graph. This solution has value n(n�1)2(n�2) � n2 . Our algorithm will round this toa tree, whih ould yield a star having n� 1 edges and all nodes of odd degree.The seond stage will then yield a tour having roughly 32 (n� 1) edges, whih isof weight 3 times the LP solution.We are not aware of any graph for whih the Rajagopalan-Vazirani algorithmahieves its worst ase bound of 32 . Hene for the tree over, we do not have anexample where the ratio of our solution to even the LP optimum is 3. However,for the omplete unit graph, it is easy to see that the integrality gap is at least 2.4.2 Further open questions.Obtaining approximation algorithms with better approximation guarantees is anobvious open question. We note that we do not have examples where either algo-rithm atually ahieves its worst-ase performane bound, so it may be possible
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