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Abstract

We consider compact routing schemes in networks of low doubling dimension, where the doubling
dimension is the least value α such that any ball in the network can be covered by at most 2α balls
of half radius. There are two variants of routing scheme design: (i) labeled (name-dependent) routing,
where the designer is allowed to rename the nodes so that the names (labels) can contain additional
routing information, e.g. topological information; and (ii) name-independent routing, which works on
top of the arbitrary original node names in the network, i.e. the node names are independent of the
routing scheme.

In this paper, given any constant ǫ ∈ (0, 1), and an n-node weighted network of low doubling dimension
α ∈ O(loglog n), we present

• A (1+ǫ)-stretch labeled compact routing scheme with ⌈log n⌉-bit routing labels, O(log2 n/ log log n)-

bit packet headers, and
(

( 1
ǫ
)O(α) log3 n

)

-bit routing information at each node;

• A (9 + ǫ)-stretch name-independent compact routing scheme with O(log2 n/ log log n)-bit packet

headers, and
(

( 1
ǫ
)O(α) log3 n

)

-bit routing information at each node.

In addition, we also prove a lower bound: any name-independent routing scheme with o(n(ǫ/60)2) bits
of storage at each node has stretch no less than 9− ǫ, for any ǫ ∈ (0, 8). Therefore our name-independent
routing scheme achieves asymptotically optimal stretch with polylogarithmic storage at each node and
packet headers.

Note that both schemes are scale-free in the sense that their space requirements do not depend on
the normalized diameter ∆ of the network. We also present a simpler non-scale-free (9 + ǫ)-stretch
name-independent compact routing scheme with improved space requirements if ∆ is polynomial in n.

1 Introduction

In this paper we study routing schemes, that is, distributed network algorithms capable of routing network
packets from an arbitrary source to an arbitrary destination node in the network. The objective of a routing
scheme is to find an efficient path from the given source to any destination. We measure the quality of a path
by its length, where the length of a path is given by the sum of the weights of its edges, and thus consider
its efficiency to be expressed by the ratio of its length to the length of the shortest path between the same
source and destination. If every source stored a complete description of the network, it would be easy to
route along shortest paths. This could even be done if each source stored just the next hop of the shortest
path to each destination in its routing table, resulting in routing tables of size linear on the number of nodes.
For scalability, we would like to restrict the amount of storage available to each node to be polylogarithmic
in the size of the network. Hence in this paper we study compact routing schemes, defined to be those where
the size of the routing tables and packet headers is only polylogarithmic in the size of the network.

A routing scheme consists of two parts:

• the preprocessing step, in which the routing tables are configured at every node, and
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• the routing algorithm, which is used by the nodes to perform the actual routing of packets.

In the routing algorithm, given a destination’s name, the source node sets up a packet header and sends
the packet to one of its neighbors, based on the destination’s name and the local routing table. A relay node,
upon the reception of a packet, decides whether the packet has reached its destination and if not, where to
forward it, based on the packet header and the local routing table.

There are two variants of routing scheme design:

1. name-dependent (or labeled) routing, where the designer is allowed to rename the nodes so that the
names (labels) can contain additional routing information, e.g. topological information; and

2. name-independent routing, which works on top of the arbitrary original node names in the network,
i.e. the node names are independent of the routing scheme.

A labeled routing scheme has the advantage of embedding information in the node labels to facilitate routing,
but it also requires the source node to know the designer-given label of the destination node, which is not
always feasible. Given a labeled routing scheme, it remains an issue to determine how (and where) the
source will find the label of the destination. Therefore name-independent routing schemes are preferable,
especially in applications with intrinsic requirements on node names (e.g. distributed hash tables [7]), those
that require randomly distributed node names (e.g. Chord [26]), or those that perform network operations
such as locating nearby copies of replicated objects and tracking of mobile objects [7, 8].

As indicated above, a fundamental trade-off in routing is between the quality of routing paths and the
space overhead introduced by the routing tables and packet headers. Formally, the stretch of a routing
scheme is the maximum ratio of the length of the path by which a packet is delivered, to the length of the
shortest source-destination path, over all source-destination pairs. The space requirement of a scheme refers
to the size of routing tables maintained at each node and the size of the packet headers used by the scheme.
Recall that a routing scheme is compact if the size of the routing table at each node and the size of every
packet header are bounded by a polylogarithmic function of the number of nodes.

Early on in the study of routing schemes, it was shown that a routing scheme that achieves stretch k on
a general graph must have a space requirement of Ω(n1/k) bits at some nodes (for more details on previous
work, refer to Section 1.2). Thus compact routing on general graphs requires larger than constant stretch.
In order to allow better results, one must restrict the structure of the metric space induced by the network.
Two classes of networks have been particularly well studied, and they can both be seen as generalizations of
the notion of bounded-dimension Euclidean space.

The growth-bounded networks are characterized by the condition that the number of nodes within distance
2d of any node is at most a constant factor more than the number of nodes within distance d, and the bounded
doubling dimension networks are characterized by the condition that each ball of radius d can be covered
by a constant number of balls of radius d/2. Since these are really properties of the induced metric space,
we will often use the terms “network” and “metric” interchangeably, always referring to the metric space
induced by the (possibly weighted) network.

Many problems become easier in growth-bounded metrics and those of bounded doubling dimension [17,
23, 21, 27, 25, 24, 10, 19, 18, 11], including metric embeddings, the traveling salesman problem, compact
data structures, distance estimation and finding nearest neighbors.

An example of a growth-bounded metric is induced by the d-dimensional grid. However, if points are
excluded from the grid and we consider its subgraph, the resulting metric may not be growth-bounded
anymore. It will, however, still have bounded doubling dimension. It is easy to see that every growth-
bounded metric is also of finite doubling dimension, while the opposite may not be true. This distinction is
also reflected in the stretch of compact routing schemes for the two classes. On growth-bounded networks,
there exist name-independent compact routing schemes with stretch arbitrarily close to 1, while such results
are not possible for networks of bounded doubling dimension. Even routing schemes with only constant
stretch in doubling networks were elusive for a long time. In fact, our main result in this paper is to
present upper and lower bounds on the stretch achievable by a name-independent compact routing scheme
in doubling metrics. Our routing scheme is not the first constant-stretch one; it was preceded by the scheme
of Abraham et al. [2]. However, it is less complicated its stretch matches the lower bound.
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Finally, we should mention in this introduction another network parameter that influences the design of
routing schemes. The normalized diameter ∆ of a graph is the ratio of the largest to the smallest shortest
path distance in the graph. For many routing schemes [8, 27, 10, 24, 20], the routing table size at each
node, the packet header size, or the routing label directly depend on a polylogarithmic function on ∆. While
those schemes are compact for networks where ∆ is polynomial in n, they do not scale well if ∆ grows
exponentially with n. Hence, one would prefer a compact routing scheme that does not directly depend
on ∆. We call a routing scheme scale-free if the space requirements for its routing tables, packet headers,
and routing labels are independent of the normalized diameter. While the schemes we present as our main
results in this paper are scale-free, they have simpler variants that are not [2, 20], and in Section 3.2 we also
present an improved version of our work in [20]. Intuitively, most of the compact routing schemes designed
so far use a hierarchical data structure to reduce the routing problem to a setting that is “almost” a regular
Euclidean grid. The problem becomes challenging in networks that are not growth-bounded, because such
hierarchical data structures assume a regular increase in the number of nodes with the distance from the
source. This may not hold in doubling networks, and so the hierarchies must be based not only on the
distance from the source, but also on the number of nodes actually seen by moving up to that distance.
This issue was first addressed by Abraham et al. [2] using notions of dense and sparse levels. We offer a
different approach, more directly based on natural properties of doubling metrics, and believe our results to
be simpler as a consequence.

1.1 Our Contributions.

We present scale-free compact routing schemes for networks of low doubling dimension in both the name-
independent and labeled routing models. In addition, we also provide a matching lower bound proof on the
stretch of a name-independent scheme in networks with constant doubling dimension. Doubling dimension is
fomally defined as the least value α such that any ball can be covered by at most 2α balls of half radius. More
precisely, Theorems 1.1 and 1.2 describe the results of our name-independent routing scheme and labeled
(name-dependent) routing scheme respectively; Theorem 1.3 states the matching lower bound on the stretch
of a name-independent scheme.

Theorem 1.1 Given any constant ǫ ∈ (0, 1) and a weighted undirected graph G with n nodes and dou-
bling dimension α, we present a scale-free name-independent routing scheme for G with (9 + ǫ)-stretch,
O(log2 n/ log log n)-bit packet headers, and

(

( 1
ǫ )O(α) log3 n

)

-bit routing information at each node.

Theorem 1.2 Given any constant ǫ ∈ (0, 1) and a weighted undirected graph G with n nodes and dou-
bling dimension α, we present a (1 + ǫ)-stretch labeled routing scheme for G with ⌈log n⌉-bit routing labels,
O(log2 n/ log log n)-bit packet headers, and

(

( 1
ǫ )O(α) log3 n

)

-bit routing information at each node.

Theorem 1.3 For any constant ǫ ∈ (0, 8), there is a weighted undirected graph G with n nodes, doubling
dimension α ≤ 6 − log ǫ and normalized diameter ∆ = O(21/ǫn) such that any name-independent routing

scheme on G that uses routing tables of size o(n(ǫ/60)2) bits at each node has stretch at least 9− ǫ.

In addition, as an introduction to our scale-free name-independent routing scheme presented in Sec-
tion 3.3, we present a simpler non-scale-free name-independent compact routing scheme as stated in The-
orem 1.4, which is an improved version of our work in [20]. Note that if the normalized diameter ∆ is
a polynomial in n, the space bounds of the scheme in Theorem 1.4 are actually better than those of the
scale-free scheme in Theorem 1.1, since it only requires

(

( 1
ǫ )O(α) log2 n

)

-bit routing information at each node
and O(log n)-bit packet headers.

Theorem 1.4 Given any constant ǫ ∈ (0, 1) and a weighted undirected graph G with n nodes and doubling
dimension α, we present a name-independent routing scheme for G with (9 + ǫ)-stretch, O(log n)-bit packet
headers, and

(

( 1
ǫ )O(α) log ∆ log n

)

-bit routing information at each node.
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We define a network to have low doubling dimension if α = O(loglog n). Hence by Theorems 1.1 and 1.3,
our name-independent routing scheme is the first name-independent scale-free compact routing scheme for
networks of low doubling dimension with (asymptotically) optimal stretch, closing the gaps left by the results
in [20] (where an optimal-stretch, but not scale-free, name-independent scheme is presented) and in [2] (where
a scale-free, but not optimal-stretch, name-independent scheme is presented). By asymptotically optimal
stretch, we mean that the stretch of our algorithm is 9 + ǫ, for any fixed constant ǫ ∈ (0, 1), while for any
ǫ′ ∈ (0, 8) there is an instance, i.e. a network, such that any name-independent compact routing scheme has
stretch at least 9− ǫ′.

Our contributions for the labeled routing model are twofold. First, our algorithm is the first (asymptoti-
cally) optimal-stretch scale-free compact labeled routing scheme for networks of low doubling dimension that
uses optimal ⌈log n⌉-bit routing labels (and hence embeds the minimal required amount of network-dependent
routing information into the routing labels). Second, our techniques are significantly simpler than the ones
used by Abraham et al. in [2], who also present an asymptotically optimal-stretch scale-free labeled routing
scheme (they use 2O(α) log3 n-bit routing labels though). Our labeled routing scheme relies on a simple
and unifying hierarchical network decomposition technique using a ball-packing, rather than the complex
sparse-dense decomposition of [2].

We believe that some of the techniques introduced in this paper are a major contribution on their
own. The new techniques and data structures presented in this paper enable us to go beyond the results
in both [20] and [2] and obtain an optimal-stretch scale-free name-independent scheme for networks of
low doubling dimension. In particular, we believe that our ball-packing decomposition, used in both the
name-independent and labeled routing schemes, will have an impact on other problems that also rely on a
hierarchical structure of r-nets (see Definition 2.1). In a nutshell, both types of schemes rely on a global
hierarchy of r-nets. In order to avoid a dependence on ∆, we cannot store information for all O(log ∆) layers
of r-nets: We only maintain information about O(log n) layers at each node, while packing balls are used to
account for the layers for which no information exists at a node.

1.2 Related Work

Not surprisingly, there has been a vast amount of research on efficient network routing schemes. General
overviews are available in Peleg’s book [22] and the surveys by Gavoille [15] and Gavoille and Peleg [16].

There are lower bound results for both labeled and name-independent models. For the labeled model,
Thorup and Zwick [29] showed that there exist graphs such that every labeled routing scheme with stretch less
than 2k+1, for k = 1, 2, 3, 5, must have Ω(n1/k)-bit routing tables at some nodes. For the name-independent
model, Abraham, Gavoille, and Malkhi [4] showed that there exist graphs such that every name-independent
routing scheme with stretch less than 2k + 1 must have Ω((n log n)1/k)-bit routing tables on some nodes.
However the graphs they designed have large doubling dimension, namely Θ(log n). In this paper, for any
fixed ǫ ∈ (0, 8), we show that there exists a tree with constant doubling dimension (no more than 6− log ǫ)

and normalized diameter ∆ = O(21/ǫn) such that any name-independent routing scheme with o(n(ǫ/60)2)-bit
routing table at each node must have stretch no less than 9− ǫ.

Awerbuch and Peleg [9] pioneered the the name-independent model, designing a name-independent
scheme with stretch O(k2) and Õ(n1/k log ∆)1 bits of storage per node. The stretch was improved to O(k)
with the same space requirement in [3]. In addition, Abraham, Gavoille and Malkhi [5] presented a scale-free
name-independent routing scheme with O(k) stretch, and Õ(n1/k)-bit routing tables, asymptotically optimal
for general graphs, given the lower bound for general graphs in [4].

Constant-stretch name-independent compact routing schemes do exist for restricted classes of graphs.
Table 1 summarizes the results of constant stretch name-independent compact routing schemes in networks
of low doubling dimension. For growth-bounded networks (a subclass of networks of constant doubling
dimension), a randomized (1 + ǫ)-stretch compact routing scheme is known [6]. For unweighted graphs
excluding fixed Kr,r minors (including trees and planar graphs), a (1+ǫ)-stretch compact scheme is presented
in [1].

1The Õ() notation denotes complexity similar to O() up to poly-logarithmic factors.
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Reference Stretch Routing Table (in bits) Header (in bits)

O(1) 2O(α) log ∆ log n O(log n)
Abraham et al. [2]

O(1) 2O(α) log4 n 2O(α) log3 n

Theorem 1.4 9 + ǫ ( 1
ǫ )O(α) log ∆ log n O(log n)

Theorem 1.1 9 + ǫ ( 1
ǫ )O(α) log3 n O( log2 n

log log n )

Table 1: Name-independent routing schemes in networks with n nodes, doubling dimension α, and normalized
diameter ∆

Reference Routing Table (in bits) Header (in bits) Label (in bits)

Talwar [27] O( 1
αǫ )

α(log2+α ∆) O(α log2 ∆) O(α log ∆)

Chan et al. [10] (α
ǫ )O(α)(log ∆ log n) O(α log 1

ǫ log ∆) O(α2 log α log ∆)

( 1
ǫ )O(α)(log ∆ log n) O(α log 1

ǫ log ∆) O(α log 1
ǫ log ∆)

Slivkins [24]
( 1

ǫ )O(α)(log ∆ log n loglog ∆) 2O(α) log n log(1
ǫ log ∆) 2O(α) log n loglog ∆

( 1
ǫ )O(α) log ∆ log n O(log n) log n

Abraham et al. [2]
( 1

ǫ )O(α) log4 n 2O(α) log3 n 2O(α) log3 n

Theorem 1.2 ( 1
ǫ )O(α)(log3 n) O( log2 n

log log n ) log n

Table 2: (1 + ǫ)-stretch labeled routing schemes in networks with n nodes, doubling dimension α, and
normalized diameter ∆

In the labeled (or name-dependent) model, Eilam et al. [13] achieved stretch 5 with Õ(n1/2)-bit storage
and O(log n)-bit labels, while Cowen [12] proposed a stretch 3 labeled routing scheme with Õ(n2/3)-bit storage
and O(log n)-bit labels. Furthermore, Thorup and Zwick [29] achieve stretch 2k−1 using Õ(n1/k)-bit routing
tables and O(k log2 n)-bit labels. For trees, optimal stretch labeled routing schemes with O(log2 n/ log log n)
bits of label, packet header and storage were presented in [14, 29]. There are (1 + ǫ)-stretch labeled routing
schemes with polylogarithmic space for planar graphs [28], and graphs excluding a fixed minor [1]. In
addition, (1 + ǫ)-stretch labeled compact routing schemes are also deviced in networks of low doubling
dimension, and Table 2 summarizes those results.

In this paper, we focus on designing scale-free compact routing schemes in both name-independent
and labeled models for networks of low doubling dimension. Recently, a scale-free constant-stretch name-
independent routing scheme with 2O(α) log4 n-bit storage and 2O(α) log3 n-bit packet headers was proposed
by Abraham et al. [2] for networks of low doubling dimension; their stretch factor, though constant, is very
large and of limited practical interest. They also present a scale-free (1 + ǫ)-stretch labeled scheme with
( 1

ǫ )O(α) log4 n-bit storage, and (1
ǫ )O(α) log3 n-bit labels and headers. Both their schemes rely on a sparse-

dense decomposition technique, which differentiates dense and sparse regions of the network. Intuitively, they
maintain two sets of routing schemes, one for dense and one for sparse regions, that are applied alternatively
depending on the density of the region of the network considered. The sparse-dense decomposition technique
is rather involved and does not yield good stretch factors for the name-independent routing case, nor does
it yield optimal stretch if we use optimal-size routing labels in the labeled routing case. In this paper, we
define a new unifying and simple O(log n)-level hierarchical decomposition technique based on ball packing,
which “efficiently” covers dense and sparse regions of the network alike. We carefully design data structures
to combine the two hierarchical network decompositions used by our algorithms, namely r-nets and ball
packings, in order to eliminate the storage dependence on ∆. The combined hierarchies also eliminate the
need for differentiated treatment of sparse and dense regions, allowing for much simpler routing algorithms,
and thus optimal stretch in the name-independent routing case, and optimal routing label size in the labeled
routing case.
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2 Preliminaries

In this section, we present some important definitions and basic results, which will be used in the following
sections.

Let G = (V,E) be a connected, edge-weighted, undirected graph with n nodes, shortest-path metric
d, doubling dimension α ∈ O(loglog n), and arbitrary normalized diameter ∆. Recall that the doubling
dimension of G is the least value α such that any ball in the graph can be covered by at most 2α balls of
half radius, and the normalized diameter ∆ is the ratio of the largest to the smallest shortest path distance
in the graph, i.e. ∆ = max d(u, v)/minu6=v d(u, v). A ball of radius r centered at node u, denoted by Bu(r),
is the set of nodes within distance r from u; I.e. for any u ∈ V and r > 0, Bu(r) = {x ∈ V : d(u, x) ≤ r}.
W.l.o.g., assume that the minimum weight of an edge is normalized to be 1, thereby ∆ = max d(u, v), and
that both n and ∆ are powers of 2.

Our routing schemes rely on a hierarchy of r-nets as their most basic data structure. An r-net captures
some of the geometric properties of the network, and is defined as follows:

Definition 2.1 (r-net) An r-net of a metric space (V, d) is a subset Y ⊆ V such that any point in V is
within distance at most r from Y , and any two points in Y are within distance at least r.

For any finite metric it is easy to show that such an r-net exists and can be constructed greedily. The
following is a well-known result about r-nets:

Lemma 2.2 ([17]) Let Y be an r-net of (V, d). For any u ∈ V and r′ ≥ r, we have |Bu(r′)∩ Y | ≤
(

4r′

r

)α

.

We now construct 2i-nets Yi for all i ∈ [log ∆]1 as follows:

1. The ∆-net Ylog ∆ is a singleton for an arbitrary node in V .

2. Recursively construct the 2i-net Yi by greedily expanding Yi+1 with nodes to obtain a 2i-net, for
i = log ∆− 1, log ∆− 2, . . . , 0.

Following this construction, we have

Ylog ∆ ⊆ Ylog ∆−1 ⊆ · · · ⊆ Y0 = V. (1)

For any node u ∈ V , we define its zooming sequence as follows: (i) Let u(0) = u; (ii) recursively define
u(i) be the nearest node to u(i− 1) in Yi for i from 1 to log ∆ (if there are several such nearest nodes, use
some arbitrary tie-breaking mechanism, but all nodes should use the same tie-breaking mechanism, e.g., the
least node id). By the definition of r-net, for any u ∈ V and any i ∈ [log ∆], we have

i
∑

k=1

d(u(k − 1), u(k)) ≤
i
∑

k=1

2k < 2i+1. (2)

We now form a netting tree of r-nets {Yi} by building a path from each node u ∈ V along its zooming
sequence

〈

u(0), u(1), · · · , u(log ∆)
〉

, and denote the netting tree as T ({Yi}).
We next introduce the concept of a ball packing, which captures some of the combinatorial properties

of the network. We will use ball packings to circumvent the geometric factor, namely the factor of log ∆,
incurred by the hierarchy of r-nets on the size of the routing tables, thereby achieving scale-free schemes.

Let ru(j) be the radius of ball Bu(ru(j)) with size 2j , i.e. |Bu(ru(j))| = 2j , for any node u ∈ V and
j ∈ [log n]. For each j ∈ [log n], let Bj be a ball packing as defined in Lemma 2.3.

Lemma 2.3 (Packing Lemma) For any j ∈ [log n], there exists a ball packing Bj of G, i.e. a (maximal)
set of non-intersecting balls, such that

1For any integer x > 0, let [x] denote the set {0, 1, · · · , x}.
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1. For any ball B ∈ Bj, |B| = 2j.

2. For any node u, there exists a ball B ∈ Bj centered at c such that the radius of B is at most ru(j)
(i.e. rc(j) ≤ ru(j)) and d(u, c) ≤ 2ru(j).

Proof: Consider the set of balls {Bu(ru(j)) : u ∈ V }. Greedily select balls from this set in the order of
shortest radius to longest to form a maximal set of non-intersecting balls Bj .

First, such a ball packing Bj has Property (1), since |Bu(ru(j))| = 2j for any node u ∈ V . Second, for
any node u ∈ V , if Bu(ru(j)) ∈ Bj , Property (2) is trivially satisfied. Otherwise, Bu(ru(j)) intersects some
B ∈ Bj with center c. The radius of B is at most ru(j), i.e. rc(j) ≤ ru(j), since the balls are selected by
increasing radius. Moreover, since B and Bu(ru(j)) intersect and rc(j) ≤ ru(j), we have d(u, c) ≤ 2ru(j).
Thus Property (2) follows.

3 Name-Independent Routing Schemes

In this section, we first present a simpler name-independent compact routing scheme as stated in Theorem 1.4,
whose space requirements depend on the normalized diameter ∆, thereby not scale-free. Furthermore in
Section 3.3, we improve the scheme to be scale-free.

Our simpler name-independent routing scheme will use the labeled routing scheme of Abraham, Gavoille,
Goldberg and Malkhi [2, Theorem 4] as the effective underlying labeled routing scheme. For reference, we
list the main results achieved by this labeled routing scheme:

Lemma 3.1 ([2]) Given any undirected edge-weighted graph with n nodes, doubling dimension α, and nor-
malized diameter ∆, for any ǫ ≤ 1/2, there exists a (1 + ǫ)-stretch labeled routing scheme with ⌈log n⌉-bit
routing labels,

(

log ∆ log n/ǫO(α)
)

-bit routing information at each node and O(log n)-bit packet header.

On the other hand, in order to remove the dependence on ∆, our scale-free name-independent routing
scheme will use our scale-free labeled routing scheme given by Theorem 1.2 and described in Section 4 as
the effective underlying labeled routing scheme.

Since (1+ǫ)(1+O(ǫ)) = 1+O(ǫ) for ǫ < 1, we will omit the (1+ǫ) stretch caused by the underlying labeled
routing when analyzing our name-independent schemes. Moreover, for simplicity, we will prove Theorem 1.4
and 1.1 with stretch in terms of big-O of ǫ, i.e. with stretch 9 + O(ǫ).

3.1 Data Structure

In this section, we first define a search tree for a ball, and provide procedures to store and retrieve (key,
data) pairs, where for our name-independent scheme we take the original node name as the key and the node
label of the underlying labeled routing scheme as the data.

For any u ∈ V , let id(u) denote the arbitrary original name of u, and let l(u) denote the label given by
the underlying labeled routing scheme. We maintain a hierarchy of search trees to store (name, label) pairs
and retrieve the label of a node given its name. Thus every time u wants to communicate with a node v
given by its name id(v), u uses id(v) to retrieve the label l(v) and then routes to v using the underlying
labeled scheme.

3.1.1 Search Tree

Definition 3.2 (Search Tree) For any ǫ ∈ (0, 1) and any ball Bc(r) in G, let U0 = {c}, and for 1 ≤ i ≤
⌊log(ǫr)⌋ let Ui be a 2⌊log(ǫr)⌋−i-net of Bc(r) \

⋃

0≤j<i Uj. Then the search tree on Bc(r), denoted by T (c, r),
is formed by connecting each node v ∈ Ui to its nearest node in Ui−1 for 0 < i ≤ ⌊log(ǫr)⌋, and defining the
weight on each edge (u, v) equal to d(u, v) in G.
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From the definition of r-net, we can derive the following bound on the height of the search tree T (c, r):

r +

⌊log(ǫr)⌋
∑

i=1

2⌊log(ǫr)⌋−i ≤ (1 + ǫ)r. (3)

Let the two endpoints of each virtual edge in the search tree keep each other’s routing label, so that
they can communicate using the underlying labeled scheme. Note that {Ui} is a partition of Bc(r), and by

Lemma 2.2 the root has the maximum degree in the tree,
(

4r
2⌊log(ǫr)⌋−1

)α
=
(

1
ǫ

)O(α)
. Hence each node keeps

(

1
ǫ

)O(α)
labels for the search tree.

Next, given a search tree T (c, r) with m nodes, we show how to store k (key, data) pairs in the search
tree:

Algorithm 1 Store data in the search tree T (c, r)

1: sort all pairs according to their keys into a list
2: for each new visited node during a depth-first traversal of T (c, r) do
3: pick k/m new pairs from the list of Step 1, and store them at the current node
4: end for
5: Each node u in T (c, r) stores the range of keys of the pairs stored in u and its descendants in T (c, r);

furthermore, u stores the range information of all its children.

Finally, we define a procedure that, given key, searches for data in T (c, r). The procedure starts from
and reports back to the root to with cost 2(1 + ǫ)r. Since (1 + ǫ)(1 + O(ǫ)) = 1 + O(ǫ) for ǫ < 1, we will
omit the (1 + ǫ) factor in the cost of the search procedure.

Algorithm 2 SearchTree(key, T (c, r))
1: u← c
2: while there exists a child u′ of u in T (c, r) such that the range of u′ contains key do
3: go to node u′ and u← u′

4: end while
5: if u stores the data corresponding to the given key then
6: report the data
7: else
8: report error: there is no pair in T (c, r) with the given key
9: end if

10: go back from u to c along the tree T (c, r)

3.1.2 Hierarchical Search Structures

First, as defined in Section 2, we have Yi, a 2i-net, for i ∈ [log ∆]. Recall that the netting tree T ({Yi}) is
formed by connecting each node u along its zooming sequence {u(i)}. For each virtual edge (u(i), u(i + 1))
of the netting tree T ({Yi}) with u(i) 6= u(i + 1), let u(i) store the label of u(i + 1). By Eqn. (1) and the
fact that u(i) 6= u(i + 1), we have that u(i) ∈ Yk for all k ≤ i and u(i) /∈ Yk for all k > i. Thus the node
u(i) stores only one label of the elements of its zooming sequence, namely that of its parent u(i + 1) in the
netting tree, though node u(i) may appear multiple times in the netting tree. Thus each node u ∈ V can
now route packets along its zooming sequence by using the underlying labeled routing scheme.

Second, for any i ∈ [log ∆] and any u ∈ Yi, we maintain a search tree T (u, 2i/ǫ) for the ball Bu(2i/ǫ),
storing the pairs (id(v), l(v)) of all nodes v in the same ball.

Lemma 3.3 (Storage) The routing information at each node has log ∆ log n/ǫO(α) bits.
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Proof: By Lemma 3.1, the underlying labeled routing scheme requires
(

log ∆ log n/ǫO(α)
)

bits at each
node.

Each node maintains at most one label of its parent node in the netting tree.
The storage required to maintain search trees and store routing labels in them can be bounded as

follows. Since the maximum degree in any search tree is ( 1
ǫ )O(α), and the size of each range and routing label

is O(log n), each node in a search tree maintains (1
ǫ )O(α) log n bits of range information and link information.

Since each search tree stores exactly the (name, label) pairs of its own nodes, each node of the search tree
stores O(log n) bits of data. For each i ∈ [log ∆], the number of u ∈ Yi such that the search tree T (u, 2i/ǫ)
contains a fixed node is (1

ǫ )O(α) by Lemma 2.2. Therefore the total storage for maintaining search trees and

storing routing labels at each node is no more than (1
ǫ )O(α) log ∆ log n.

3.2 Routing Algorithm

Now we are ready to describe our simpler name-independent routing scheme, and prove its performance
bounds.

The routing procedure is described in Algorithm 3. Assume that a source node u wants to send a message
to a destination node v, given the name id(v) of v.

u

u(j − 1)

u(j)

v

Bu(j)(2
j/ǫ)

Figure 1: Routing from u to v in the name-independent routing scheme

Algorithm 3 Name-independent routing

1: set i← 0
2: repeat
3: go to u(i) using the underlying routing scheme
4: perform a local search at u(i) by calling the procedure SearchTree(id(v), T (u(i), 2i/ǫ))
5: set i← i + 1
6: until the routing label l(v) of v is found
7: go to v from u(i) using the underlying labeled routing scheme.

Figure 1 illustrates an execution of Algorithm 3. The procedure SearchTree(id(v), T (u(i), 2i/ǫ)) searches
for the label of v in the ball Bu(i)(2

i/ǫ) repeatedly, until at level j it finds the routing label of v in the ball
Bu(j)(2

j/ǫ). Then it calls the underlying labeled routing scheme to route to v from u(j). The following
lemma guarantees the stretch bound.

Lemma 3.4 (Stretch) For any source node u and any destination node v in G, the total routing cost of
our algorithm is no more than (9 + O(ǫ))d(u, v).

Proof: As illustrated in Figure 1, let j be the index of the level at which v’s routing label is found. Thus
the routing cost from u to v consists of

∑j
i=1 d(u(i − 1), u(i)) for the cost along the zooming sequence,

∑j
i=0 2i+1/ǫ for the search procedures, and d(u(j), v) for the cost from u(j) to v. By the triangle inequality,
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we have d(u(j), v) ≤ d(u, v) +
∑j

i=1 d(u(i − 1), u(i)). Hence by Eqn. (2), we find that the total cost is at
most

j
∑

i=1

d(u(i− 1), u(i)) +

j
∑

i=0

2i+1/ǫ + d(u(j), v) ≤ 2j+2(1/ǫ + 1) + d(u, v). (4)

On the other hand, since v’s routing label is not found by SearchTree(id(v), T (u(j− 1), j− 1)), we have
d(u(j − 1), v) > 2j−1/ǫ. Thus by the triangle inequality and Eqn. (2), we have

d(u, v) ≥ d(u(j − 1), v)−
j−1
∑

i=1

d(u(i− 1), u(i)) ≥ 2j−1(1/ǫ− 2). (5)

Hence by Eqn. (4) and (5), the routing cost is no more than

2j+2(1/ǫ + 1) + d(u, v) ≤
(

1 +
8(1/ǫ + 1)

(1/ǫ− 2)

)

d(u, v) ≤ (9 + O(ǫ))d(u, v), (6)

from which the lemma follows.
Proof of Theorem 1.4: The bounds on storage and stretch follow from Lemma 3.3 and 3.4, respectively.
By Lemma 3.1, the packet header size of the name-independent routing scheme is O(log n) bits.

3.3 A Scale-Free Name-Independent Routing Scheme

In this section, we improve our simpler name-independent routing scheme above to make it scale-free, i.e.
we remove the dependence of the space requirements on the normalized diameter.

Date Structure. First, as defined in Section 2, we have Yi, a 2i-net, for i ∈ [log ∆], and each node can
route packets along its zooming sequence.

Second, let Bj be a ball packing defined as in Lemma 2.3, for each j ∈ [log n], and we maintain search
trees for two types of balls:

1. Any ball B ∈ Bj with center c, for each j ∈ [log n]. The search tree for B stores the pair (id(v), l(v))
for each node v in the ball Bc(rc(j + 2)). Note that the ball Bc(rc(j + 2)) has size 2j+2. Therefore
each node in B stores 4 pairs.

2. Any ball Bu(2i/ǫ), for i ∈ [log ∆] and any u ∈ Yi, except those balls such that Bu(2i(1/ǫ+1)) contains
a ball B ∈ Bj with center c for some j ∈ [log n] and Bu(2i/ǫ) is contained in the ball Bc(rc(j + 2))
(in this case, we will make use of the search tree on B to index the labels of nodes in Bu(2i/ǫ)). The
search tree for Bu(2i/ǫ) stores the pair (id(v), l(v)) for each node v contained in this ball.

We denote by B the collection of balls of the first type, i.e. B =
⋃log n

j=0 Bj , and by A the collection

of balls of the second type. For each u ∈ Yi, let S(u) be the set of indices i such that Bu(2i/ǫ) /∈ A , i.e.
S(u) = {i ∈ [log ∆] : Bu(2i/ǫ) /∈ A }.

Finally, for i ∈ S(u), i.e. Bu(2i/ǫ) /∈ A , by the definition of A we have that there exists a ball B ∈ Bj

with center c for some j ∈ [log n] such that B ⊆ Bu(2i(1/ǫ + 1)) and Bu(2i/ǫ) ⊆ Bc(rc(j + 2)). W.l.o.g.,
assume such j and then d(u, c) are both minimal, and let H(u, i) denote the ball B. Let u maintain a link
to c by storing its routing label l(c).

Routing Algorithm. The routing algorithm for our scale-free name-independent routing scheme remains
the same as Algorithm 3, except that we replace the SearchTree() procedure in Line 4 of Algorithm 3 by the
Search() procedure described in Algorithm 4.

Note that for any i ∈ [log ∆] and any u ∈ Yi, we can retrieve the routing label of any node in Bu(2i/ǫ) with
the Search(id, u, i) procedure, which either calls the SearchTree() procedure for Bu(2i/ǫ) if Bu(2i/ǫ) ∈ A , or
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Algorithm 4 Search(id, u, i)

1: if Bu(2i/ǫ) ∈ A then
2: call SearchTree(id, T (u, 2i/ǫ));
3: else
4: let c be the center of H(u, i), and r be the radius;
5: go to c from u by the labeled scheme;
6: call SearchTree(id, T (c, r));
7: go back from c to u.
8: end if

calls the SearchTree() procedure for the ball H(u, i) if Bu(2i/ǫ) /∈ A , i.e. i ∈ S(u). Moreover the cost of the
Search() procedure is 2i+1(1/ǫ + 1) ≈ 2i+1/ǫ. Therefore for any node u ∈ V , the Search(id, u(i), i) retrieves
the routing labels of nodes in the same area Bu(i)(2

i/ǫ) as the SearchTree(id, T (u(i), 2i/ǫ)) procedure in
Line 4 of Algorithm 3 in our simpler name-independent routing scheme, incurring basically the same cost of
2i+1/ǫ as the SearchTree() procedure. Hence by Lemma 3.4, the algorithm guarantees stretch 9 + O(ǫ) .

Storage Analysis. The following two lemmas show the storage at each node is scale-free.

Lemma 3.5 For any v ∈ V , the number of search trees that contain v is at most ( 1
ǫ )O(α) log n.

Proof: First, for each j ∈ [log n], the packing balls in Bj are disjoint, and so at most one of them contains
v. Thus the number of search trees for balls in B that contain v is no more than log n.

Second, consider the search trees for balls in A . For every v ∈ V , define the sequence of indices
R(v) = {i ∈ [log ∆] : |Bv(2i+2/ǫ)| ≥ 2|Bv(2i−2)|}. The following claim bounds the size of R(v).

Claim 3.6 |R(v)| ≤ (4− log ǫ) log n.

Proof: We bound the size of R(v) by its maximal subsequence R̃(v) = {i0, i1, · · · , im−1} such that (i)
i0 = min{R(v)}, and (ii) for 0 < j < m, ij is the minimal element in R(v) such that ij ≥ ij−1 + (4− log ǫ).

Thus |R(v)| ≤ (4− log ǫ)|R̃(v)|.
We show that |R̃(v)| ≤ log n. Since ij is also in R(v), we have |Bv(2ij+2/ǫ)| ≥ 2|Bv(2ij−2)|; and by

ij ≥ ij−1 +(4− log ǫ), we have |Bv(2ij−2)| ≥ |Bv(2ij−1+2/ǫ)|. Hence |Bv(2ij+2/ǫ)| ≥ 2|Bv(2ij−1+2/ǫ)|. Since
|Bv(2i0+2/ǫ)| ≥ 2|Bv(2i0−2)| ≥ 2, we have

n ≥ |Bv(2im−1+2/ǫ)| ≥ 2m−1|Bv(2i0+2/ǫ)| ≥ 2m.

Thus m ≤ log n and |R(v)| ≤ (4− log ǫ) log n.
The next claim relates R(v) to the search trees for balls in A that contain v, thereby bounding the

number of such trees.

Claim 3.7 If there is a ball Bu(2i/ǫ) ∈ A with u ∈ Yi that contains v, then i ∈ R(v).

Proof: Let j be the index such that 2j ≤ |Bv(2i−2)| < 2j+1. Thus rv(j) ≤ 2i−2. We will show that
|Bv(2i+2/ǫ)| ≥ 2j+2 > 2|Bv(2i−2)|, and therefore i ∈ R(v).

By Lemma 2.3, there exists a ball B ∈ Bj with center c such that rc(j) ≤ rv(j) ≤ 2i−2 and d(v, c) ≤
2rv(j) ≤ 2i−1. Since v ∈ Bu(2i/ǫ), we have d(u, c) + rc(j) ≤ d(u, v) + d(v, c) + rc(j) ≤ 2i(1/ǫ + 1). Thus
B ⊆ Bu(2i(1/ǫ + 1)). Since Bu(2i/ǫ) ∈ A , we have Bu(2i/ǫ) * Bc(rc(j + 2)) (otherwise we use the search
tree on B, instead of maintaining a search tree for Bu(2i/ǫ)). Hence rc(j + 2) ≤ d(u, c) + 2i/ǫ. Thus
d(v, c) + rc(j + 2) ≤ 2i−1 +

(

d(u, v) + d(v, c) + 2i/ǫ
)

≤ 2i+2/ǫ. Therefore Bc(rc(j + 2)) ⊆ Bv(2i+2/ǫ). Hence
|Bv(2i+2/ǫ)| ≥ 2j+2 > 2|Bv(2i−2)|. The claim follows.

For each i ∈ R(v), the number of u ∈ Yi such that v ∈ Bu(2i/ǫ) is at most (4/ǫ)α by Lemma 2.2. Now by
Claim 3.6 and 3.7, the number of search trees for balls in A that contain v is at most (4−log ǫ) log n·(4/ǫ)α =
( 1

ǫ )O(α) log n. The lemma follows.

11



Lemma 3.8 (Storage) The routing information at each node has ( 1
ǫ )O(α) log3 n bits.

Proof: By Theorem 1.2, the underlying labeled routing scheme requires (1
ǫ )O(α) log3 n bits at each node.

Each node maintains at most one label of its parent node in the netting tree.
For any u ∈ V , the following claim, shows that the number of links to the center of balls H(u, i), for all

i ∈ S(u), is no more than 4 log n, which implies that each node requires only O(log2 n) bits of storage for
these links.

Claim 3.9 For any u ∈ V , the number of balls H(u, i) for all i ∈ S(u) is no more than 4 log n.

Proof: We show that for any j ∈ [log n], the number of different balls H(u, i) ∈ Bj with i ∈ S(u) is at
most 4, from which the claim follows.

By contradiction, assume there is an index j ∈ [log n] such that the number of different balls H(u, i) ∈ Bj

with i ∈ S(u) is at least 5. Let i0 < i1 < i2 < i3 < i4 be five of these indices. By definition of H(u, ik),
we have H(u, ik) ⊆ Bu(2ik(1/ǫ + 1)). Since ik < i4 for k < 4, we have Bu(2ik(1/ǫ + 1)) ⊂ Bu(2i4/ǫ). Thus
Bu(2i4/ǫ) contains balls H(u, ik) for k < 4. Since all balls H(u, ik) in Bj are non-intersecting and have size
2j , we have |Bu(2i4/ǫ)| > 2j+2. Thus Bu(2i4/ǫ) * Bc(rc(j + 2)), where c is the center of H(u, i4). This
contradicts the definition of H(u, i4).

The storage required to maintain search trees and store routing labels in them can be bounded as
follows. Since the maximum degree in any search tree is ( 1

ǫ )O(α), and the size of each range and routing label

is O(log n), each node in a search tree maintains (1
ǫ )O(α) log n bits of range information and link information.

Since each node in a search tree stores at most 4 (name, label) pairs, it stores O(log n) bits of data. Since
the number of search trees containing any node is at most (1

ǫ )O(α) log n by Lemma 3.5, the total storage for

maintaining search trees and routing labels at each node is no more than (1
ǫ )O(α) log2 n.

Thus each node stores ( 1
ǫ )O(α) log3 n bits of routing information.

Proof of Theorem 1.1: The bounds on stretch and storage requirement at the nodes follow from
Lemma 3.4 and 3.8, respectively. The packet header size of our name-independent routing scheme is dom-
inated by the packet header size of the underlying labeled scheme, i.e. O(log2 n/ log log n) bits, by Theo-
rem 1.2.

4 A Scale-Free Labeled Routing Scheme

In this section, we present our scale-free labeled routing scheme as stated in Theorem 1.2. For simplicity, we
will prove the stretch in terms of big-O, i.e. stretch 1 + O(ǫ).

4.1 Data Structures

First, as defined in Section 2, we have Yi, a 2i-net, for i ∈ [log ∆]. We define the label function l : V → [log n]
to be the enumeration of the leaves in a depth-first traversal of the netting tree T ({Yi}). Note that the leaf
set of T ({Yi}) is Y0 = V . For any i ∈ [log ∆] and any node x ∈ Yi, by the properties of depth-first traversal,
the labels of leaf nodes of the subtree rooted at x in T ({Yi}) are a range of continuous integers, denoted by
Range(x, i). Thus we have l(u) ∈ Range(x, i) iff x = u(i).

Second, let the ith ring of u be the node set Xi(u) = Bu(2i/ǫ) ∩ Yi, and R(u) = {i ∈ [log ∆] : ∃j ∈
[log n], ǫ

6ru(j) ≤ 2i ≤ ru(j)}. Then each node u stores the range information Range(x, i) for nodes x ∈ Xi(u)
and i ∈ R(u), and the log n-bit information to identify which neighbor of u is on the shortest path from
u to x. Note that |R(u)| = O( log n

ǫ ), and by Lemma 2.2 we have |Xi(u)| = (1/ǫ)O(α). Hence the range

information stored at each node is (1/ǫ)O(α) log2 n bits.
Third, let Bj be a ball packing defined as in Lemma 2.3, for each j ∈ [log n]. For any j ∈ [log n] and

any ball B ∈ Bj with center c, let V (c, j) be the Voronoi region of c in the Voronoi diagram of centers of
balls in Bj , i.e. V (c, j) = {u ∈ V : d(u, c) ≤ d(u, c′), for the center c′ of any ball in Bj}; and let Tc(j) be
a shortest path tree rooted at c and spanning V (c, j). For each tree Tc(j), we maintain a labeled routing
scheme as follows, and let l(v; c, j) denote the local routing label of v ∈ Tc(j):
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Lemma 4.1 ([14, 29]) For every weighted tree T on n nodes, there exists a labeled routing scheme that,
given any destination label, routes optimally on T from any source to the destination. The storage per node,
the label size, and header size are O(log2 n/ log log n) bits.

For each j ∈ [log n], each node u ∈ V stores the local routing label l(c; c, j) of the center c, where c is the
center of a ball B ∈ Bj such that u ∈ V (c, j). Note that by Voronoi diagram properties, for each fixed j, the
trees Tc(j) are disjoint. Thus the local routing label information at each node is O(log3 n/ log log n) bits.

Finally, for each j ∈ [log n] and each center c of a ball in Bj , we build a search tree T ′(c, rc(j)) as in
Definition 4.2 to store the (key, data) pairs of nodes v ∈ Tc(j) ∩ Bc(rc(j + 1)), where the key is the global
routing label l(v), and data is the local routing label l(v; c, j) of v in the tree Tc(j). Thus given a key, i.e.
l(v), the SearchTree(l(v), T ′(c, rc(j))) procedure, as defined in Section 3.1.1, retrieves the label l(v; c, j) of
v along the shortest path of the search tree.

Definition 4.2 (Search Tree II) For any ball Bc(r), the search tree II, denoted by T ′(c, r), is modified
from the search tree T (c, r) given by Definition 3.2:

(i) Instead of building the tree by iterating i from 1 to ⌊log(ǫr)⌋, we only iterate i from 1 to min(⌈log n⌉ , ⌊log(ǫr)⌋)
to connect each node v ∈ Ui to its nearest node u in Ui−1, and define the weight on the virtual edge (u, v)
equal to d(u, v) in G.

(ii) If ⌈log n⌉ < ⌊log(ǫr)⌋, for any u ∈ U⌈log n⌉, let V (u) be the Voronoi region of u in the Voronoi diagram
of a set of sites U⌈log n⌉ in Bc(r), i.e. V (u) = {x ∈ Bc(r) : d(x, u) ≤ d(x, u′), for any u′ ∈ U⌈log n⌉}. Link
the nodes in V (u) \⋃0≤j≤⌈log n⌉ Uj into a path, connect it to u and define the weight on these edges equal to
2ǫr
n , for each u ∈ U⌈log n⌉.

Note that the height of the search tree T ′(c, r) is at most (1 + ǫ)r + 2ǫr
n · n = (1 + O(ǫ))r. The following

lemma shows how to link the endpoints of each virtual edge.

Lemma 4.3 We can deliver packets along each virtual edge of the search tree T ′(c, r), with cost at most the
weight of the edge, by maintaining 2O(α) log2 n bits of information per node.

Proof: First, for any virtual edge (u, v), where u ∈ Ui−1, v ∈ Ui and 0 < i ≤ min(⌈log n⌉ , ⌊log(ǫr)⌋), let
each node x on the shortest path from u to v maintain the next hop information in both directions. Thus
u and v can communicate with each other along the shortest path. Now we bound the space requirement.
On the direction from v to u, since u is the nearest node in Ui−1 to v and x is on the shortest path between
u and v, u is also the nearest node in Ui−1 to x. Thus x stores one entry of the next-hop information to
its nearest node in Ui−1. On the direction from u to v, by Lemma 2.2, the number of nodes v ∈ Ui whose
nearest node in Ui−1 is a fixed node u is 8α. Hence x maintains at most 8α entries of next-hop information
to those v’s. Since 0 < i ≤ min(⌈log n⌉ , ⌊log(ǫr)⌋) and each next hop information has size no more than
log n bits, each node in Bc(r) requires at most 2O(α) log2 n bits of the next hop information.

Second, consider the virtual edges on the path from u to link all nodes in V (u)\⋃0≤j≤⌈log n⌉ Uj , for each

u ∈ U⌈log n⌉. Let T (u) be a shortest path tree rooted at u and spanning V (u). We maintain a local labeled
routing scheme given by Lemma 4.1 for the tree T (u); and let the two endpoints of each of these virtual
edges keep each other’s local label. Since d(u, v) ≤ 2⌊log(ǫr)⌋−⌈log n⌉ ≤ ǫr

n for any v ∈ V (u) \⋃0≤j≤⌈log n⌉ Uj ,

the routing cost along each of these virtual edges is at most 2ǫr
n . By the Voronoi diagram properties,

the trees T (u) for all nodes u ∈ U⌈log n⌉ are disjoint. Thus by Lemma 4.1, each node in Bc(r) maintains

O(log2 n/ log log n) bits of routing information for the local labeled routing.
In summary, now the two endpoints of each virtual edge in T ′(c, r) can communicate with each other

with cost at most the weight of the edge, by maintaining 2O(α) log2 n bits of information per node.

Lemma 4.4 (Storage) The routing information at each node is at most ( 1
ǫ )O(α) log3 n bits.

Proof: Each node maintains (1
ǫ )O(α) log2 n-bit range information, O(log3 n/ log log n)-bit local routing

label information, and 2O(α) log3 n-bit data structures and O(log3 n/ log log n)-bit data storage for search
trees. Hence the routing information at each node is at most (1

ǫ )O(α) log3 n bits.
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4.2 Routing Algorithm

Assume that a source node u wants to send a packet to a destination node v given its label l(v). The routing
procedure is defined in Algorithm 5.

u0 = u
u1

uk uk+1 ut

cBc(rc(j))

x0
x1

xk

xt−1

v

Figure 2: Routing from u to v in the labeled routing scheme

Algorithm 5 Labeled Routing Scheme

1: set k ← 0, u0 ← u, and i−1 ← +∞
2: set ik ← the minimal index in R(uk) such that there exists xk ∈ Xik

(uk) with l(v) ∈ Range(xk, ik)
3: if ik ≤ ik−1 and d(uk, xk) ≥ 2ik−1/ǫ− 2ik then
4: uk+1 ← the next hop along the shortest path from uk to xk and go to uk+1

5: set k ← k + 1, and repeat Step 2
6: end if
7: set t ← k; j ← the index in [log n] such that rut

(j) ≤ 2it < rut
(j + 1); and c ← the center of a ball

B ∈ Bj such that ut ∈ V (c, j)
8: route to c using the labeled tree routing on Tc(j) [the label l(c; c, j) is stored at ut]
9: SearchTree(l(v), T ′(c, rc(j))). [By Lemma 4.5 this retrieves l(v; c, j).]

10: route to v using the labeled tree routing on Tc(j)

Figure 2 illustrates the routing path from u to v, which consists of the path u0 → u1 → · · · → ut, then
the routing path from ut to c, the search trail of SearchTree() in the ball Bc(rc(j)), and the routing path
from c to v. Then the following lemma guarantees that the SearchTree() procedure in the ball Bc(rc(j))
retrieves the local label l(v; c, j) successfully.

Lemma 4.5 The SearchTree(l(v), T ′(c, rc(j))) in Step 9 retrieves the label of v, where j and c is defined
in Step 8.

Proof: First, since the if condition in Step 3 is not satisfied in Iteration t, we have the following claim,
which is proved later.

Claim 4.6 Let t ∈ [log ∆] and j ∈ [log n] be defined as in line 7. Then rut
(j)/(3ǫ) < d(ut, v) < rut

(j +1)/5.

Second, we show that v ∈ V (c, j), i.e. v ∈ Tc(j), and that v ∈ Bc(rc(j + 1)). This implies that the local
label l(v; c, j) is stored in the search tree T ′(c, rc(j)).

For a contradiction, assume v ∈ V (c′, j) where c′ 6= c is a center of a ball B′ ∈ Bj . Thus we have

d(v, c′) ≤ d(v, c) ≤ d(v, ut) + d(ut, c) ≤ d(ut, v) + 2rut
(j), (7)

where the last inequality follows from Lemma 2.3. Since B′ and Bc(rc(j)) are disjoint, we have

rc(j) + rc′(j) < d(c, c′) ≤ 2d(v, c). (8)
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Thus by Eqn. (7) and (8), we have

d(ut, c
′) + rc′(j) ≤(d(ut, v) + d(v, c′)) + (2d(v, c)− rc(j))

≤d(ut, v) + 3d(v, c)

≤4d(ut, v) + 6rut
(j)

<rut
(j + 1),

(9)

where the last inequality follows from Claim 4.6. In addition, by Lemma 2.3 and Claim 4.6, we have

d(ut, c) + rc(j) ≤ 3rut
(j) < rut

(j + 1). (10)

Note that the ball center at ut with radius max(d(ut, c) + rc(j), d(ut, c
′) + rc′(j)) contains both B′ and

Bc(rc(j)). Thus it has size 2j+1, because B′ and Bc(rc(j)) are disjoint and both of size 2j . Hence rut
(j+1) ≤

max(d(ut, c) + rc(j), d(ut, c
′) + rc′(j)), which contradicts Eqn. (9) and (10). Therefore v ∈ V (c, j).

We now show that v ∈ Bc(rc(j + 1)). Since balls Bc(rc(j + 1)) and But
(rut

(j + 1)) have the same size,
we have

d(ut, c) + rc(j + 1) ≥ rut
(j + 1). (11)

By Lemma 2.3 and Claim 4.6, we have

d(c, v) ≤ d(c, ut) + d(ut, v) < rut
(j + 1)− d(ut, c). (12)

Thus by Eqn. (11) and (12), we have d(c, v) ≤ rc(j +1), i.e. v ∈ Bc(rc(j +1)). Therefore the tree T ′(c, rc(j))
stores the local label l(v; c, j) of v, and SearchTree(l(v), T ′(c, rc(j))) retrieves it.
Proof of Claim 4.6: Note that l(v) ∈ Range(xt, it) in line 2 implies xt is the tth element of v’s zooming
sequence, i.e. xt = v(it). Let x′ = v(it − 1). We have x′ ∈ Xit−1(ut) because the if condition in Line 3 is
not satisfied for k = t; the detailed argument is given in the following two cases:

1. Either it > it−1. We have d(ut, x
′) ≤ d(ut, xt−1) + d(xt−1, x

′) ≤ 2it−1/ǫ + d(xt−1, x
′). If it−1 = it − 1,

then we have xt−1 = x′ and d(ut, x
′) < 2it−1/ǫ. Otherwise we have 2it−1/ǫ ≤ 2it−2/ǫ and d(xt−1, x

′) ≤
2it by the definition of r-nets. Hence d(ut, x

′) < 2it−1/ǫ for ǫ < 3/4.

2. Or d(ut, xt) < 2it−1/ǫ − 2it . Since d(x′, xt) ≤ 2it by the definition of r-net, we have d(ut, x
′) ≤

d(ut, xt) + d(xt, x
′) ≤ (2it−1/ǫ− 2it) + 2it = 2it−1/ǫ.

Therefore we have
d(ut, x

′) ≤ 2it−1/ǫ (13)

i.e. x′ ∈ Xit−1(ut). Hence by the minimality of it in Line 2, we have it − 1 /∈ R(ut). Since rut
(j) ≤ 2it <

rut
(j + 1) as in Line 7, by the definition of R(u) and it − 1 /∈ R(ut), we have

rut
(j) < 2it−1 < rut

(j + 1) · ǫ/6. (14)

Thus by Eqn. (13), (14) and (2), we have

d(ut, v) ≤ d(ut, x
′) + d(x′, v) < 2it−1/ǫ + 2(it−1)+1 < rut

(j + 1)/5. (15)

We now show that rut
(j)/(3ǫ) ≤ d(ut, v). Let i′ = ⌊log rut

(j)⌋ ∈ R(ut). Since i′ < it by Eqn. (14), with
the minimality of it we have v(i′) /∈ Xi′(ut), i.e. d(ut, v(i′)) > 2i′/ǫ ≥ rut

(j)/(2ǫ). Thus by Eqn. (2), we
have

d(ut, v) ≥ d(ut, v(i′))− d(v(i′), v) ≥ rut
(j)/(2ǫ)− 2i′+1 > rut

(j)/(3ǫ). (16)

The claim follows from Eqn. (15) and (16).

Lemma 4.7 (Stretch) For any source node u and any destination node v in G, the total routing cost of
the labeled routing scheme is no more than (1 + O(ǫ))d(u, v).
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Proof: Since the cost of the SearchTree() on the ball Bc(rc(j))) in Step 9 is bounded by (2 + O(ǫ))rc(j),
as illustrated in Fig. 2 the total routing cost is no more than

t
∑

k=1

d(uk, uk−1) + d(ut, c) + (2 + O(ǫ))rc(j) + d(c, v) (17)

First since d(ut, c) ≤ 2rut
(j) and rc(j) ≤ rut

(j) by Lemma 2.3 and since rut
(j)/(3ǫ) < d(ut, v) by

Claim 4.6, we have

d(ut, c) + (2 + O(ǫ))rc(j) + d(c, v)

≤2d(ut, c) + (2 + O(ǫ))rc(j) + d(ut, v)

≤(1 + O(ǫ))d(ut, v)

(18)

Second, we bound the cost of
∑t

k=1 d(uk, uk−1). Since xk is on the shortest path from uk−1 to xk−1 and
since d(uk, xk) ≤ d(uk, xk−1) + d(xk−1, xk) by the triangle inequality, for all k ≤ t, as illustrated in Fig. 2
we have

t−1
∑

k=0

d(uk, uk+1) + d(ut, v)

≤ d(u0, x0) +
t−1
∑

k=1

d(xk, xk−1) + d(xt−1, v)

≤ d(u, v) + 2i0+2,

(19)

where the last inequality follows from d(u0, x0) ≤ d(u, v) + d(x0, v) and Eqn. (2).
Now consider the total cost. If t = 0, the routing cost is given by Eqn. (18), and is at most (1+O(ǫ))d(u, v).

If t > 0, we have d(u, x0) > 2i0−1/ǫ − 2i0 because the if condition in Step 3 is not satisfied in Iteration 0.
Hence by Eqn. (2), we have

d(u, v) ≥ d(u, x0)− 2i0+1 ≥ 2i0−1/ǫ− 2i0+2. (20)

Thus by Eqn. (17) and (18), the total routing cost is no more than

(1 + O(ǫ))

(

t
∑

k=1

d(uk, uk−1) + d(ut, v)

)

≤(1 + O(ǫ))d(u, v),

(21)

where the last inequality follows from Eqn. (19) and (20), and the equation (1 + O(ǫ))2 = (1 + O(ǫ)). This
completes the lemma.
Proof of Theorem 1.2: The bounds on stretch and storage at the nodes follow from Lemmas 4.7 and
4.4, respectively. The packet header size of our labeled routing scheme is dominated by the packet header
size of the underlying labeled tree-routing scheme, i.e. O(log2 n/ log log n) bits, by Lemma 4.1.

5 Lower Bound for Name-Independent Routing Schemes

In this section, we present the proof of our lower bound as stated in Theorem 1.3. Note that a name-
independent routing scheme works on arbitrary original node names.

In Section 5.1, by taking advantage of the small number of different configurations of routing tables
compared to the number of different namings, we show that there exist many namings such that the routing
configuration for a large number of nodes is identical for each of these namings. These identical namings will
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be called congruent (see Definition 5.3 for a formal definition). We show that, given a fixed source node and
destination name, the routing algorithm must follow the same initial steps for any two congruent namings,
provided that the nodes visited by the routing algorithm during these initial steps have the same routing
configuration for both namings.

In Section 5.2, we build the counterexample, a tree, to be used in the lower bound proof. First, from
Section 5.1, it follows there exists a specific target name such that, for different congruent namings, it may
be found in any branch of the tree. Second, given one of these namings, a sequence of branches is defined
according to the routing path from the root to the node with the specific target name. We will use this
sequence to show that the stretch achieved by the algorithm cannot be less than 9−ǫ, for any fixed ǫ ∈ (0, 8).

5.1 Congruent Namings

Given an integer constant c ≥ 2 and a graph G = (V,E) with n nodes and a β-bit routing table at each
node, where β = o(n1/c), consider any name-independent routing scheme on G. First we give definitions
about naming.

Definition 5.1 (Naming) A naming ℓ on nodes in V is a bijective function ℓ : V → [n]1.
Let L denote the family of all namings.

Note that given a naming on V , the name-independent routing scheme configures the β-bit routing table
at each node. Therefore it naturally determines a routing configuration function as follows.

Definition 5.2 (Routing Configuration Function) A routing configuration function is a function:

f : L × V → [2β ].

Definition 5.3 (Set of Congruent Namings)
Given a routing configuration function f : L × V → [2β ], a mapping g : V → [2β ] and a subset of nodes
V ′ ⊆ V , the set of namings congruent with respect to V ′ and g is the set of namings L′ = {ℓ ∈ L : f(ℓ, v) =
g(v),∀v ∈ V ′}.

Let {Vi : i = 0, 1, · · · , c} be a partition of V such that |V0| = 1 and |Vi| = ni/c − n(i−1)/c for 1 ≤ i ≤ c.
Note that

∑c
i=0|Vi| = n. Then we have

Lemma 5.4 Given any routing configuration function f , there exists a mapping g : V → [2β ] such that

|Li| ≥ n!/2βni/c

, where Li is the set of namings congruent with respect to
⋃i

j=0 Vj and g, for 0 ≤ i ≤ c.
Moreover by definition, L0 ⊇ L1 ⊇ · · · ⊇ Lc.

Proof: We recursively define g by applying the pigeonhole principle.

1. Define g on the node set V0 so that |L0| ≥ n!/2β . Such an assignment exists since the number of all
namings is n!, i.e. |L| = n!, and since there are 2β possible values for the routing table at the single
node of V0.

2. For 1 ≤ i ≤ c, recursively define g on the node set Vi so that |Li| ≥ n!/2βni/c

. Such an assignment

exists since |Li−1| ≥ n!/2βn(i−1)/c

and there are 2β(ni/c−n(i−1)/c) possible values for routing tables at
all nodes of Vi.

Given any name-independent routing scheme on G and its routing configuration function f , let Li be
defined as in Lemma 5.4, for 0 ≤ i ≤ c. For any naming ℓ and any subset of nodes V ′, let ℓ(V ′) be the set
of names of nodes in V ′ under naming ℓ, i.e. ℓ(V ′) = {ℓ(v) : ∀v ∈ V ′}. The following lemma find a specific
name, which is used as the destination name in the lower bound analysis.

1In this section, for any integer x > 0, let [x] denote the set {0, 1, · · · , x − 1}.
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Lemma 5.5 There exists a name t ∈ [n] such that for any 0 < i < c there exist two distinct namings
ℓ1, ℓ2 ∈ Li−1 with t ∈ ℓ1(Vi) and t /∈ ℓ2(Vi).

Proof: For 0 < i < c, let Yi be the set of names used only for nodes in Vi for all namings in Li−1, i.e.
Yi =

⋂

∀ℓ∈Li−1
ℓ(Vi); let Ni be the set of names never used for any node in Vi for any naming in Li−1, i.e.

Ni =
⋂

∀ℓ∈Li−1
ℓ(Vi). Since Yi ⊆ ℓ(Vi) and Ni ∩ ℓ(Vi) = ∅, for any ℓ ∈ Li−1, we have

|Li−1| ≤
(

n− |Yi| − |Ni|
|Vi| − |Yi|

)

|Vi|! · (n− |Vi|)!. (22)

The above formula follows from two observations: (1) The number of different sets of names that ℓ may use

for Vi is
(

n−|Yi|−|Ni|
|Vi|−|Yi|

)

, since the names in Yi are preselected, and those in Ni are not allowed. (2) Once the

set of names for Vi is selected, the number of such different namings is at most |Vi|! · (n− |Vi|)!.
The following claim bounds the cardinality of Yi and Ni, which is proved later.

Claim 5.6 For any 0 < i < c, we have |Yi|+ |Ni| = o(n).

Since c is a constant, by Claim 5.6 we have |⋃c−1
i=1 (Yi ∪Ni)| = o(n). Thus let a name t /∈ ⋃c−1

i=1 (Yi ∪Ni).
For any 0 < i < c, since t /∈ Ni, there exists a naming ℓ1 ∈ Li−1 such that t ∈ ℓ1(Vi); since t /∈ Yi, there
exists a naming ℓ2 ∈ Li−1 such that t /∈ ℓ2(Vi). It completes the lemma.
Proof of Claim 5.6: Consider two cases depending on whether |Vi| ≤ (n− |Yi| − |Ni|)/2:

1. If |Vi| > (n− |Yi| − |Ni|)/2, by Eqn. (5.6) we have

|Li−1| ≤
(

n− |Yi| − |Ni|
|Vi| − |Yi|

)

≤
(

2|Vi|
|Vi|

)

. (23)

Since |Li−1| ≥ n!/2βn(i−1)/c

by Lemma 5.4, we have

2βn(i−1)/c ≥ n!
(

2|Vi|
|Vi|

)

|Vi|! · (n− |Vi|)!

=
n(n− 1) · · · (n− |Vi|+ 1)

2|Vi|(2|Vi| − 1) · · · (|Vi|+ 1)

≥
(

n

2|Vi|

)|Vi|

.

(24)

Since |Vi| = ni/c − n(i−1)/c, we have

n

2(ni/c − n(i−1)/c)
≤ 2

βn(i−1)/c

ni/c−n(i−1)/c

= 1 + O

(

βn(i−1)/c

ni/c − n(i−1)/c

)

= 1 + o(1),

(25)

where the last two equations follow from ex = 1 + O(x) for small x and β = o(n1/c). This contradicts
i < c. Omit this case.

2. If |Vi| ≤ (n− |Yi| − |Ni|)/2, by Eqn. (5.6) we have

|Li−1| ≤
(

n− |Yi| − |Ni|
|Vi|

)

|Vi|! · (n− |Vi|)! (26)
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Since |Li−1| ≥ n!/2βn(i−1)/c

by Lemma 5.4, we have

2βn(i−1)/c ≥ n!
(

n−|Yi|−|Ni|
|Vi|

)

|Vi|! · (n− |Vi|)!

=
n(n− 1) · · · (n− |Vi|+ 1)

(n− |Yi| − |Ni|) · · · (n− |Yi| − |Ni| − |Vi|+ 1)

≥
(

n

n− |Yi| − |Ni|

)|Vi|

≥(1 +
|Yi|+ |Ni|

n
)|Vi|

(27)

Since |Vi| = ni/c − n(i−1)/c, we have

1 +
|Yi|+ |Ni|

n
≤ 2

βn(i−1)/c

ni/c−n(i−1)/c

= 1 + o(1),

(28)

where the last equation follows from ex = 1 + O(x) for small x and β = o(n1/c)

Therefore |Yi|+ |Ni| = o(n)

By Definition 5.3, for any naming l ∈ Li−1, the configuration of the routing table is the same, i.e.
f(l, v) = g(v), for every node v in

⋃i−1
j=0 Vj . Thus by Lemma 5.5, we have

Corollary 5.7 For 0 < i < c, given any naming l ∈ Li−1 and a target name t ∈ [n] that satisfies the

conditions of Lemma 5.5, the routing tables of nodes in
⋃i−1

j=0 Vj cannot uniquely determine whether the node
named t belongs to Vi or not.

Hence, no routing algorithm can be certain of correctly deciding whether the node named t belongs to
Vi or not without seeing some information from nodes outside of

⋃i−1
j=0 Vj .

5.2 Lower Bound Proof

In this section, we start by building a graph G; later with the help of results in Section 5.1, we will show
that, for any name-independent routing scheme with o(n(ǫ/60)2)-bit routing tables at each node, the stretch
on G cannot be smaller than 9− ǫ.

The graph G will be a tree with root node u connecting the subtrees Ti,j , which are paths as defined
below. Given ǫ ∈ (0, 8), let p = ⌈72/ǫ⌉ + 6 and q = ⌈48/ǫ⌉ − 4. For any i ∈ [p] and j ∈ [q], let Ti,j be a

path on n
iq+j+1

pq − n
iq+j

pq nodes with edges of weight 1/n. Note that the length of each path is at most 1.
For any integer i and j ∈ [q], let wi,j = 2i(q + j). Since wi+1,0 = 2i(q + q), we also write wi,q = wi+1,0 and
Ti,q = Ti+1,0, for any 0 ≤ i < p− 1.

As shown in Fig. 3, the graph G is a tree with root u and an edge of length wi,j connecting u to the
middle node of the path Ti,j , for each i ∈ [p] and j ∈ [q].

For i ∈ [p] and j ∈ [q], let

Si,j = {u}+

i−1
⋃

x=0

q−1
⋃

y=0

Tx,y +

j
⋃

y=0

Ti,y (29)

Since |Ti,j | = n
iq+j+1

pq − n
iq+j

pq , we have |Sp−1,q−1| = n
(p−1)q+(q−1)+1

pq = n, i.e. the number of nodes in G

is n. The normalized diameter is given as ∆ ≤ 2wp−1,q−1

1/n = O(21/ǫn). The following lemma shows that the

doubling dimension of G is a constant.
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u
w0,0

w0,1

w0,q−1
w1,0 w1,q−1

wi,0
wi,q−1

wp−1,0

wp−1,q−1

T0,0

T0,1

T0,q−1

T1,0
T1,q−1

Ti,0

Ti,q−1

Tp−1,0

Tp−1,q−1

Figure 3: A tree consists of root u, paths Ti,j , for all i ∈ [p] and j ∈ [q], and an edge with weight wi,j = 2i(q+j)
connecting the root to the middle node of each path Ti,j . The number of nodes in path Ti,j is equal to

(n
iq+j+1

pq − n
iq+j

pq ), thereby total n nodes of the tree.

Lemma 5.8 The doubling dimension α of G is no more than 6− log ǫ.

Proof: Let B be a ball of radius r centered at v, for any r > 0 and any node v ∈ V (G).
If u 6∈ B, then B is contained in the path Ti,j that contains the center node v and r < d(u, v). Thus B

can be covered by at most 3 balls of radius r/2, since Ti,j is a path.
If u ∈ B and d(u, v) ≥ r/2, then B can be covered by the ball centered at u of radius r/2 and the ball

centered at v of radius r/2.
If u ∈ B and d(u, v) < r/2, then B can be covered by the ball centered at u of radius r/2 and the paths

{Ti−1,j , Ti−1,j+1, · · · , Ti,j}, where wi,j ≤ r < wi,j+1. The nodes that belong to the ball B in each of these
paths can be covered by the ball of radius r/2 centered at the middle node of the path since the length of
any these paths is less than 1, thereby less than r/2. Thus B can be covered with no more than q + 2 balls
of radius r/2.

Therefore the shortest path metric of G is a doubling metric with dimension at most log(q+2) ≤ 6− log ǫ
for q = ⌈48/ǫ⌉ − 4.

We now present the proof of our lower bound.
Proof of Theorem 1.3:

For our counterexample graph G, by contradiction, assume there is a name-independent routing scheme
with β-bit routing table at each node and stretch less than 9− ǫ, where β = o(n(ǫ/60)2).

Let c = pq. For a simple calculation, we have c = (⌈72/ǫ⌉+ 6)(⌈48/ǫ⌉ − 4) < (60/ǫ)2 for ǫ ∈ (0, 8). Thus
β ∈ o(n1/c). Note that {{u}, Ti,j : i ∈ [p], j ∈ [q]} is a partition {Vi : i = 0, 1, · · · , c} of V such that
|V0| = |{u}| = 1 and |Viq+j+1| = |Ti,j | = n(iq+j+1)/c − n(iq+j)/c for i ∈ [p], j ∈ [q]. Hence the results from
Lemma 5.4 and 5.5 can be applied to this partition. For any name-independent routing scheme on G with
its routing configuration function f , let Li be defined as in Lemma 5.4, for 0 ≤ i ≤ c. Let a target name
t ∈ [n] be selected by Lemma 5.5 so that for any 0 < i < c there exist two distinct namings ℓ1, ℓ2 ∈ Li−1

with t ∈ ℓ1(Vi) and t /∈ ℓ2(Vi).
Given a naming ℓ ∈ Lc−2 for which ∃v ∈ Vc−1 such that t = l(v), suppose the routing algorithm delivers

the message from the root u to the node v named t by visiting the subtrees
〈

Tik,jk
: k = 0, · · · , m̃− 1

〉

in

order. Let σ =
〈

b0, b1, · · · , bm−1

〉

be a maximal subsequence of σ̃ =
〈

wik,jk
: k = 0, · · · , m̃ − 1

〉

such that
(i) b0 = wi0,j0 , and (ii) for 0 < i < m, bi is the first element of σ̃ that comes after bi−1 in σ̃ and that is
greater than bi−1. Note that σ is strictly increasing and bm−1 equals the largest element of σ̃.

Let Ai =
∑i

j=0 bj . The following three technical claims respectively bound Ai and Ai+1 in terms of bi,
provide a bound on the length of σ, and relate Ak+1 to bk.

Claim 5.9 For any i ∈ [log ∆], suppose wx,y = bi. Then

1. If i ≤ m− 3, we have Ai ≤ (4− ǫ/3)bi;
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2. If bi+1 > wx,y+1, we have Ai+1 ≤ (4− ǫ/3)bi.

Proof: First consider the case that i ≤ m−3. Since i ≤ m−3 and
〈

b0, b1, · · · , bm−1

〉

is a strictly increasing
sequence, then bi ≤ wp−1,q−3. Thus xq + y + 1 ≤ (p− 1)q + (q − 3) + 1 = c− 2. Hence ℓ ∈ Lc−2 ⊆ Lxq+y+1

by Lemma 5.4. Note that Lxq+y+1 is the set of congruent namings with respect to
⋃xq+y+1

j=0 Vj = Sx,y. After
first visiting the subtree Tx,y (= Vxq+y+1), the routing algorithm has routing information only from the
routing tables of nodes in Sx,y. Thus by Corollary 5.7, the routing algorithm is not able to decide on the
location of the node named t so far.

On the other hand, by Lemma 5.5, there is a naming ℓ1 ∈ Lxq+y+1 such that t = ℓ1(v
′) for some node

v′ ∈ Tx,y+1. Since ℓ ∈ Lc−2 ⊆ Lxq+y+1, the configuration of the routing table of each node in Sx,y for naming
ℓ is the same as that for naming ℓ1. Therefore if the naming were ℓ1 instead of ℓ, the routing algorithm
would have visited nodes in the exact same order until it first visits some node not in Sx,y. Hence in order

to guarantee our assumption on the stretch bound for the naming ℓ1, we must have 2Ai+d(u,v′)
d(u,v′) ≤ 9 − ǫ.

Thus Ai ≤ (4− ǫ/2)d(u, v′). Since d(u, v′) ≤ wx,y+1 + 1 =
wx,y+1+1

wx,y
bi ≤ (1 + 2/q)bi and q ≥ 48/ǫ− 6, then

Ai ≤ (4− ǫ/2)(1 + 2/q)bi ≤ (4− ǫ/3)bi.
Second, consider the case that bi+1 > wx,y+1. Suppose wx′,y′ = bi+1. Then the first node visited by the

routing algorithm that is not in Sx,y must be in Tx′,y′ , since by the definition of σ, the first element of σ̃ greater

than bi is wx′,y′ . Hence if bi+1 > wx,y+1, using a similar argument as above, we have 2Ai+1+d(u,v′)
d(u,v′) ≤ 9− ǫ.

Similarly, we have Ai+1 ≤ (4− ǫ/3)bi.

Claim 5.10 The length of σ is no less than p/2, i.e. m ≥ p/2.

Proof: First we show that bi ≤ w2i+2,0, for any i ∈ [log ∆], by a simple inductive argument:
(1) The base case is to show b0 ≤ w2,0. If b0 = w0,0 ≤ w2,0, we are done. Otherwise, b0 = wi0,j0 > w0,0.

Since Ti0,j0 is the first subtree visited by the algorithm, then consider a naming ℓ1 ∈ L0 such that t = ℓ1(v
′)

for some node v′ ∈ T0,0. Since ℓ ∈ Lc−2 ⊆ L0, the configuration of the routing table at the root u for naming
ℓ is the same as that for naming ℓ1. Therefore if the naming were ℓ1 instead of ℓ, the first subtree visited

would be Ti0,j0 as well. Hence we have 2b0+d(u,v′)
d(u,v′) ≤ 9−ǫ. Thus b0 ≤ (4−ǫ/2)d(u, v′) ≤ (4−ǫ/2)(w0,0 +1) ≤

4w0,0 = w2,0, since q ≥ 8/ǫ− 1.
(2) For any i ≥ 1 and i ∈ [log ∆], we have bi

bi−1
≤ 4. Otherwise, suppose bi−1 = wx′,y′ , and thus

bi > 4bi−1 > wx′,y′+1. By Claim 5.9(2), Ai ≤ 4bi−1. Thus bi

bi−1
< Ai

bi−1
≤ 4, a contradiction. Hence

bi ≤ 4i · w2,0 = w2i+2,0.
Since v ∈ Vc−1 = Tp−1,q−2, then Tp−1,q−2 must be visited, i.e. wp−1,q−2 is in σ̃. Hence bm−1 ≥ wp−1,q−2,

because bm−1 equal to the largest element in σ̃. Since bm−1 ≤ w2(m−1)+2,0 and q − 2 > 0, we have
w2(m−1)+2,0 ≥ bm−1 ≥ wp,0, i.e. m ≥ p/2.

Claim 5.11 There exists k ≤ m− 4 such that Ak+1

bk
> (4− ǫ/4).

Proof: Let ri = Ai

bi
and r̃i = bi+1

bi
for i ∈ [log ∆] and i < m− 1. Since Ai+1 = Ai + bi+1 = (ri + r̃i)bi and

Ai+1 = ri+1bi+1, we have ri + r̃i = ri+1r̃i.
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Then,

m−4
∑

i=0

ri+1r̃i =
m−4
∑

i=0

(ri + r̃i)

= r0 +

m−4
∑

i=0

(ri+1 + r̃i)− rm−4

≥ 2

m−4
∑

i=0

√

ri+1r̃i + r0 − rm−4

≥ 2
m−4
∑

i=0

√

ri+1r̃i − 3,

(30)

where the first inequality follows from the inequality
∑

i(xi+yi) ≥ 2
∑

i

√
xiyi which holds for all sequences of

nonnegative numbers xi, yi, and the second inequality follows because r0 = 1, and rm−4 ≤ 4 by Claim 5.9(1).
Now by averaging, there exits k ∈ [0,m − 4] such that rk+1r̃k ≥ 2

√
rk+1r̃k − 3/(m − 3). By solving the

quadratic equation in
√

rk+1r̃k, we get
√

rk+1r̃k > 1 +
√

1− 3/(m− 3). Then rk+1r̃k > 2 − 3/(m − 3) +

2
√

1− 3/(m− 3) > 4− 9/(m− 3) ≥ 4− ǫ/4, since m ≥ p/2 ≥ 36
ǫ + 3. Note that rk+1r̃k = Ak+1

bk
. Thus the

claim follows.
We are now ready to conclude the proof of Theorem 1.3. Let k be the index as defined in Claim 5.11

such that Ak+1

bk
> (4− ǫ/4). Suppose wx,y = bk. There are two cases depending on whether bk+1 = wx,y+1.

(1) If bk+1 = wx,y+1, then we have Ak+1

bk+1
= Ak+1

bk

wx,y

wx,y+1
> (4 − ǫ/4) 2x(q+y)

2x(q+y+1) ≥ (4 − ǫ/4) q
q+1 ≥ 4 − ǫ/3,

since q ≥ 48/ǫ − 4. On the other hand, by Claim 5.9, we have Ak+1 ≤ (4 − ǫ/3)bk+1 for k + 1 ≤ m − 3,
leading to a contradiction.

(2) If bk+1 6= wx,y+1, then bk+1 > wx,y+1. Thus by Claim 5.9(2) Ak+1 ≤ (4 − ǫ/3)bk < (4 − ǫ/4)bk, a
contradiction.

Therefore, the theorem follows.

6 Conclusion and Future work

In this paper, for networks of low doubling dimension α ∈ O(loglog n), we presented (i) a scale-free
(9 + ǫ)-stretch name-independent routing scheme which requires O(log2 n/ loglog n)-bit packet headers, and
(

( 1
ǫ )O(α) log3 n

)

-bit routing information at each node; (ii) a scale-free (1 + ǫ)-stretch labeled routing scheme

with ⌈log n⌉-bit routing labels which requires O(log2 n/ log log n)-bit packet headers and
(

( 1
ǫ )O(α) log3 n

)

-bit
routing information at each node. In addition, for name-independent routing schemes, we also presented a
matching lower bound which shows that our scale-free name-independent routing scheme achieves asymp-
totically optimal stretch in networks of low doubling dimension.

Since stretch 9 is asymptotically optimal for name-independent compact routing schemes in networks
of low doubling dimension by Theorem 1.3, and since (2k + 1)-stretch routing schemes for general graphs
require Ω((n log n)1/k)-bit storage at some nodes [4], a natural open question is whether we can achieve
better stretch if we relax some of our routing requirements. I.e., can we achieve better stretch if we allow a
small constant fraction of nodes to use larger space, or a small constant fraction of source-destination pairs
to incur larger routing stretch?

Abraham et. al [4] show that any name-independent routing scheme for general graphs with o((n/(9k))1/k)-
bit storage at each node has average stretch at least k/4 + 7/8. Hence, an interesting question is whether
a constant-stretch name-independent compact routing scheme for general graphs with relaxed guarantees
exists. Furthermore, in the labeled routing model, it may be interesting to investigate whether we can
achieve a (1 + ǫ)-stretch labeled routing scheme for general graphs with relaxed guarantees. The strongest
lower bound result for labeled routing in general graphs states that a labeled scheme with stretch less than
3 requires Ω(n1/2)-bit storage at some nodes [29].
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