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Abstract

Gupta (SODA’01) considered the Steiner Point Removal (SPR) problem on trees. Given
an edge-weighted tree T and a subset S of vertices called terminals in the tree, find an edge-
weighted tree TS on the vertex set S such that the distortion of the distances between vertices
in S is small. His algorithm guarantees that for any finite tree, the distortion incurred is at
most 8. Moreover, a family of trees, where the leaves are the terminals, is presented such that
the distortion incurred by any algorithm for SPR is at least 4(1− o(1)). In this paper, we close
the gap and show that the upper bound 8 is essentially tight. In particular, for complete binary
trees in which all edges have unit weight, we show that the distortion incurred by any algorithm
for the SPR problem must be at least 8(1− o(1)).

1 Introduction

The Steiner Point Removal (SPR) problem was first considered by Gupta [8]. An instance of
the problem is given by an edge-weighted tree T = (V,E) and a subset S ⊆ V of vertices called
terminals. Informally, we would like to find an edge-weighted tree TS on the terminal set S such that
the new tree approximates all the distances between terminal pairs in the original tree. Formally,
we say that a weighted tree TS on the set S has distortion at most α if for all u, v ∈ S, the condition
dT (u, v) ≤ dTS

(u, v) ≤ α · dT (u, v) holds, where dG(u, v) is the shortest path distance between two
nodes u and v in the graph G. We say an instance has distortion at most α if such a tree TS exists.
The objective is to find the smallest constant α > 0 such that every instance of the SPR Problem
has distortion at most α.

In Gupta’s original paper [8], it was shown that α ≤ 8, i.e., there exists a tree TS with distortion
at most 8. This shows that any submetric of a tree metric is “close” to a tree metric. Such a result
leads to the first combinatorial proof of the fact that a graph of girth g embeds into a tree with
distortion at least Ω(g), as opposed to the topological proof given by Rabinovich and Raz [9].

Moreover, such a result has potential applications in end system multicast [4, 10, 2, 7]. In a
multicast routing protocol, a routing tree T = (V,E) is defined on hosts S, which correspond to
the terminals, and routers that connect the hosts and forward messages. The edges represent con-
nections between hosts and routers, and their weights correspond to transmission costs. However,
most routers are designed to handle only unicast, and hence a virtual routing tree TS consisting of
only the hosts is suggested for implementing the multicast protocol. Thus, it is important that the
virtual tree TS approximates the original costs well, which is ensured by the upper bound result.
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The result has also been used subsequently for embedding k-outerplanar metrics into `1 by
Chekuri et al. [3], embedding general metrics into distributions of tree metrics by Fakcharoenphol
et al. [6], and solving the metric labeling problem via tree-rounding by Archer et al. [1].

A natural question to ask is whether the upper bound of 8 is tight. The original paper [8] only
gives a lower bound of 4(1 − O(1)) for some family of trees. In this paper, we close this gap and
prove the following theorem showing that the upper bound of 8 is essentially tight.

Theorem 1.1 For any ε > 0, there exists an instance of the Steiner Point Removal Problem with
distortion at least 8− ε.

We anticipate that the techniques presented in this paper may also be applicable to the several
open problems in this area, in particular, to the open problems listed in Section 5.

1.1 Proof Strategy

Our lower bound examples will be complete binary trees with unit-weight edges, with the leaves
being the terminals. We first show in Section 3 that as far as complete binary trees are concerned,
the optimal distortion can always be achieved by a minor TS of the original tree T = (V,E), i.e.,
the tree TS can be obtained by contracting edges of tree T of the following form: (1) an edge
between two non-terminals; (2) an edge between a terminal x and a non-terminal node y, with the
resulting merged node keeping the same name (and terminal status) as x. The weight assigned to
each edge (x, y) in TS will be dT (x, y), the distance between its two endpoints in the original tree
T . Note that each node in V will eventually be contracted into a terminal in S. Thus the minor
tree TS can also be characterized by a mapping f : V → S that maps each vertex in V to the
terminal in S to which it eventually contracts. We call such a mapping f a minor mapping.

In Section 4, we show that there exists a complete binary tree such that its minors must incur
a large distortion, namely 8 − o(1). Let us define some notation before giving the general idea on
how one can get such a lower bound:

1. Denote by Tn the complete binary tree of height n, having 2n leaves, with unit-weight edges,
and denote by rn the root of Tn.

2. Expanding Parameter ρf (r): Suppose the tree T has its root r mapped under f to leaf l, i.e.
l = f(r). Suppose that w is a lowest vertex in the subtree rooted at the child of r that is not
an ancestor of l. The expanding parameter ρf (r) at r with respect to f is defined to be the
ratio dT (r, w)/dT (r, l). See Figure 1(a).

3. For each complete binary tree Tn, let ρn be the maximum ρf (rn) for all the minor mappings
f for Tn with distortion no more than α. Then define ρ := lim supn→∞ ρn.

First we show that 0 < ρ < 1 (See Claims 4.6 and 4.9.). Thus there exists an arbitrarily small
constant ε1 > 0 such that 0 < ρ − ε1 < ρ + ε1 < 1. Then by the definition of ρ, there exists an
arbitrarily large integer m such that ρ− ε1 < ρm < ρ+ ε1. Now consider the complete binary tree
Tm and the minor mapping f with distortion no more than α that achieves ρf (rm) = ρm. As shown
in Figure 1(a), let w be the lowest vertex that achieves the expanding parameter ρf (rm), vertices x
and y be the children of vertex w, and T (x) and T (y) be subtrees rooted at x and y respectively.

The idea is to find leaves p and q in the subtrees T (x) and T (y) respectively such that the
distortion exhibited by the pair (p, q) is large. First observe that the distance in Tm between any
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leaf in T (x) and any leaf in T (y) is 2m(1 − ρm) < 2m(1 − (ρ− ε1)). Next, we want to argue that
there is a leaf p in the subtree T (x) such that the distance between p and f(rm) in the minor tree
f(Tm) is larger than 2m

ρ+ε1
(1− ε2) for any constant ε2 > 0 if m is large enough. Symmetrically, we

can also find such a leaf q in the subtree T (y), thereby the distance between p and q in the minor
tree f(Tm) is larger than 4m

ρ+ε1
(1−ε2) Therefore the distortion according the minor mapping f must

be larger than 2
(1−(ρ−ε1))(ρ+ε1)(1− ε2) ≥ 8(1− ε2). Since the distortion of f is no more than α, we

get the lower bound α > 8− o(1).
We still need to determine how to find such a leaf p in the subtree T (x). We will use a recursive

algorithm on the roots of the subtrees considered, starting with the subtree T (x). First we limit p
to be one of the leaves in T (x), whose distances to f(rm) in Tm are all 2m. Then, we limit p to
be one of the leaves of T (x) in the subtree of x that does not contain f(x); the distances of those
leaves to f(x) in Tm are all 2m(1−ρm)−2 ' 2m(1− (ρ+ ε1)). In general, as shown in Figure 1(b),
we limit p to be one of the leaves of the subtree of T (z) (initially z = x) that does not contain
f(z); we then let z be the root of the corresponding subtree, and recurse. Roughly speaking, the
heights of these trees are no less than m, m(1− (ρ+ ε1)), m(1− (ρ+ ε1))

2, m(1− (ρ+ ε1))
3, · · · ,

respectively, if m is large enough (See Lemma 4.7 for a formal proof). Thus the distance between
p and f(rm) in the minor tree f(Tm) must be larger than 2m

ρ+ε1
(1 − ε2), where ε2 > 0 can be any

constant and m is large enough. Therefore our algorithm finds such a leaf p, and it follows that
α > 8− o(1).

T(    ) T(    )x y

w

r

p q

x y
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l

m

m

(a) Expanding parameter for the root of Tm

x

p

w

(b) Select p in T (x)

Figure 1: The Minor Construction for Tree Tm (Shadow areas refer to components contracted to a
terminal)

2 Notation

In this section, we will introduce and formalize some additional notation that will be used in
Sections 3 and 4. Suppose T is a tree with edge set E and a positive distance associated with each
edge. We denote the distance of the unique shortest path between two vertices u and v by dT (u, v).
We use L(T ) to denote the set of leaves, i.e. the degree-one vertices in T .

As defined in Section 1.1, we denote by Tn the complete binary tree of height n, having 2n
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leaves with unit weight edges. We denote by rn the root of Tn and the terms child, parent, ancestor
and descendant are used with their usual meanings. From now on, we restrict the SPR Problem to
such trees, with the leaves being the terminals.

Formally, we say f is a transformation from T to T̂ , if T̂ = (L(T ), Ê) is a tree on the vertex set
L(T ), and each edge (u, v) ∈ Ê has weight dT (u, v). The distortion of such a transformation is

D(f) := max
x6=y∈L(T )

d
T̂
(x, y)

dT (x, y)
.

A transformation f from T to T̂ is minor if T̂ is a minor of T , i.e. T̂ can be obtained from T by
edge contractions. Note that a minor transformation f for a tree T can be equivalently viewed as a
mapping f : V(T )→ L(T ) that maps each vertex to the terminal to which it eventually contracts.
We call such f a minor mapping.

3 Restricting to Minor Transformations

In this section, we show that in order to obtain a lower bound on the distortion of transformations
for complete binary trees, it suffices to consider minor transformations.

The radius of a tree T is given by R(T ) = minu∈V(T ) maxv∈V(T ) dT (u, v). A center point of T is
a vertex u0 ∈ V(T ) such that R(T ) = maxv∈V(T ) dT (u0, v).

Theorem 3.1 For any n ≥ 0 and for any transformation f of Tn, there exists a minor transfor-
mation f ′ such that

(a) the distortion of f ′ does not increase, D(f ′) ≤ D(f);
(b) the radius does not increase, R(f ′(Tn)) ≤ R(f(Tn));
(c) the terminal f ′(rn) is a center point of f ′(Tn).

Proof: We argue by induction on n. The case n = 0 is trivial. For the case n = 1, there is only
one transformation for T1, which is minor and satisfies the requirements.

Assume the result holds true for any Tk, where k < n. Consider some transformation f : Tn →
T̂n.

We denote by [n] the set of integers {0, 1, . . . , n}.
For any x ∈ L(Tn) and i ∈ [n], denote by Ti(x) the i-level complete binary subtree of Tn which

contains x; denote the root of Ti(x) by ri(x). For any x ∈ L(Tn) and i ∈ [n], denote by Si(x) the
minimal subtree of T̂n that includes all the vertices in L(Ti(x)). Let k be the maximum integer such
that for any x ∈ L(Tn), V(Sk(x)) ⊆ L(Tn−1(x)). Since k = 0 satisfies the above conditions, such a
k exists. Note that k < n; otherwise, L(Tn(x)) ⊆ V(Sk(x)) ⊆ L(Tn−1(x)), which is a contradiction.

From the maximality of k, there exists u ∈ L(Tn) such that V(Sk+1(u)) * L(Tn−1(u)). Also,

there exists v ∈ L(Tk+1(u)) such that Tk(v) 6= Tk(u) and the u-v path in T̂n uses some vertex not
in L(Tn−1(u)). Let vertex w /∈ L(Tn−1(u)) be the first such vertex on the path from u to v, and
u′ ∈ L(Tn−1(u)) be the previous vertex of w on the path. Since Tn−1(u

′) 6= Tn−1(w), it follows that
(u′, w) has weight 2n.

Claim 3.2 Edge (u′, w) is an edge of weight 2n that separates Sk(u) and Sk(v) in T̂n.
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Proof of Claim 3.2: By the definition of k, V(Sk(u)) ⊆ L(Tn−1(u)) and V(Sk(v)) ⊆ L(Tn−1(v)).
Since w /∈ L(Tn−1(u)), edge (u′, w) separates Sk(u) and v. Since u′ ∈ L(Tn−1(u)) and w /∈
L(Tn−1(u)), then exactly one of them is not in L(Tn−1(v)). Since V(Sk(v)) ⊆ L(Tn−1(v)), edge
(u′, w) separates Sk(v) and u. Therefore edge (u′, w) separates Sk(u) and Sk(v).

Thus in the tree T̂n, there is a unique path connecting Sk(u) and Sk(v) with all its intermediate
vertices not in V(Sk(u)) ∪ V(Sk(v)). Let u0 ∈ V(Sk(u)) and v0 ∈ V(Sk(v)) be the two endpoints of
the path. Then, vertex w is on the u0-v0 path and d

T̂n
(u0, w) ≥ 2n.

If k + 1 < n, then v ∈ L(Tk+1(u)) ⊆ L(Tn−1(u)), thereby d
T̂n
(v0, w) ≥ 2n; if k + 1 = n, we have

the trivial bound d
T̂n
(v0, w) ≥ 0.

Consider vertices u1 ∈ V(Sk(u)) and v1 ∈ V(Sk(v)), which are furthest away from u0 and v0

respectively. Hence, we have d
T̂n
(u0, u1) ≥ R(Sk(u)) and d

T̂n
(v0, v1) ≥ R(Sk(v)). Without loss of

generality, assume R(Sk(u)) ≤ R(Sk(v)).
Observing that d

T̂n
(u1, v1) = d

T̂n
(u1, u0) + d

T̂n
(u0, w) + d

T̂n
(w, v0) + d

T̂n
(v0, v1), we have

D(f) ≥
d
T̂n
(u1, v1)

dTn(u1, v1)
≥

{
4n+2R(Sk(u))

2(k+1) if k + 1 < n;
2n+2R(Sk(u))

2(k+1) if k + 1 = n
(3.1)

Also,
R(f(Tn)) ≥ 2n+R(Sk(u)) (3.2)

Next, we construct a transformation g for the subtree Tk(u). We obtain the transformed tree
T̂k(u) from Sk(u), the minimal subtree in T̂n containing L(Tk(u)), by contracting all the vertices
v /∈ L(Tk(u)) as follows:

1. Contract any edge neither of whose endpoints is in L(Tk(u)).

2. For each remaining vertex x /∈ L(Tk(u)), contract one of the edges incident to x.

3. For each edge (x, y) in T̂k(u) set its weight as dTk(u)(x, y), i.e. dTn(x, y).

The following claim states the properties of the transformation g. Its proof is technical and will
be deferred to the end of the section.

Claim 3.3 Suppose the transformation g from Tk(u) to the tree T̂k(u) = (L(Tk(u)), Ê) is as de-
scribed above. Then, the distortion D(g) ≤ D(f) and the radius R(g(Tk(u))) ≤ R(Sk(u)).

By the induction hypothesis , there exists a minor transformation g′ for Tk(u) such that D(g′) ≤
D(g), R(g′(Tk(u))) ≤ R(g(Tk(u))), and rk(u) is contracted into a center point of g′(Tk(u)). By
Claim 3.3, we also have D(g) ≤ D(f) and R(g(Tk(u))) ≤ R(Sk(u)). Hence, we have D(g′) ≤ D(f)
and R(g′(Tk(u))) ≤ R(Sk(u)).

We next use the transformation g′ to construct a minor transformation f ′ for Tn. Since all
the k-level complete binary subtrees Tk of Tn are isomorphic to Tk(u), the transformation g′ also
defines a minor transformation for each of these subtrees Tk. Then a minor transformation f ′ for
Tn can be obtained by edge contractions as follows:

1. Remove internal nodes in each Tk via edge contraction using minor transformation g′.

2. Since the (n− k − 1)-level complete binary subtree rooted at rn is the remaining component
for contraction, we just contract the whole subtree into its adjacent vertex in g ′(Tk(u)).
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Therefore, rn and rk(u) are contracted to the same leaf. Hence, rn is contracted into a center
point of g′(Tk(u)). In fact, the tree f ′(Tn) consists of components g′(Tk) and additional edges
connecting the center point of g′(Tk(u)) to the center points of the other components. Moreover if
k+1 = n, f ′(Tn) only has two components g′(Tk), thereby its diameter is 2n+2·R(g′(Tk(u))). And if
k+1 < n, f ′(Tn) has more than two components g′(Tk), thereby its diameter is 4n+2·R(g′(Tk(u))).
Thus

D(f ′) =

{
max(D(g′), 4n+2·R(g′(Tk(u)))

2(k+1) ) if k + 1 < n;

max(D(g′), 2n+2·R(g′(Tk(u)))
2(k+1) ) if k + 1 = n;

(3.3)

Thus, by Equation (3.1) and the relationship between the transformations g ′ and f , we have
D(f ′) ≤ D(f), proving part (a) of the theorem. Moreover, by Equation (3.2), we obtain part(b)

R(f ′(Tn)) = 2n+R(g′(Tk(u))) ≤ R(f(Tn)), (3.4)

and rn is contracted into a center point of g′(Tk(u)), which can be verified to be a center point of
R(f ′(Tn)), hence proving part(c).

We next give the proof of Claim 3.3, as promised earlier.
Proof of Claim 3.3: We first observe that any maximal connected component C in the tree

Sk(u) that does not contain any vertex in L(Tk(u)) will be contracted into a vertex of L(Tk(u)).
We will use the following fact about distances between leaves.

Fact 3.4 Any edge between two leaves in L(Tk(u)) has weight at most 2k; and any edge between
a leaf in L(Tk(u)) and one outside it has weight at least 2(k + 1).

1. To show D(g) ≤ D(f), we prove that d
T̂k(u)

(x, y) ≤ d
T̂n
(x, y) for any x, y ∈ L(Tk(u)).

Fix any x, y ∈ L(Tk(u)). Let P be the x-y path in T̂k(u) and Q be the x-y path in Sk(u).

Since any maximal connected component C excluding vertices in L(Tk(u)) in the tree Sk(u)
is contracted into one vertex of L(Tk(u)), any maximal subpath Q′ of Q excluding vertices
in L(Tk(u)) is contracted into some vertex c of L(Tk(u)). By maximality of Q′, there exists
a, b ∈ L(Tk(u)) on path Q such that a-Q′-b is a subpath of Q, which would become a subpath
a-c-b in P . By Fact 3.4, the length of this subpath decreases.

On the other hand, an edge in Q that joins two vertices in L(Tk(u)) remains in P and its
weight does not change.

Hence, it follows that the length of P is at most that of Q.

Therefore,
d
T̂k(u)

(x, y) ≤ d
T̂n
(x, y) for any x, y ∈ L(Tk(u)) (3.5)

Thus D(g) ≤ D(f).

2. Next we show that R(g(Tk(u))) ≤ R(Sk(u)).

Let u0 ∈ V(Sk(u)) be the center point of Sk(u). By the minimality of Sk(u), this radius must
be realized by some vertex in L(Tk(u)).

R(Sk(u)) = max
x∈Lk(u)

(d
T̂n
(u0, x)) (3.6)
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If u0 ∈ L(Tk(u)) = V(T̂k(u)), then by Equations (3.5) and (3.6),

R(T̂k(u)) ≤ max
x∈L(Tk(u))

d
T̂k(u)

(u0, x) ≤ max
x∈L(Tk(u))

(d
T̂n
(u0, x)) = R(Sk(u)).

If u0 /∈ L(Tk(u)) = V(T̂k(u)), then let u′0 ∈ V(T̂k(u)) be the vertex into which u0 is contracted.

For any x ∈ L(Tk(u)) = V(T̂k(u)), let P be the u′0-x path in T̂k(u) and Q be the u0-x path in
Sk(u).

Observe that the initial maximal subpath Q′ of Q excluding vertices in L(Tk(u)) is contracted
into u′0. Let u1 be the first vertex on Q in the direction from u0 to x such that u1 ∈ L(Tk(u)).
Hence, the subpath Q′-u1 becomes a subpath u′0-u1 in P , whose length decreases by Fact 3.4.
By Equation (3.5), the length of the remaining subpath of P is at most that of the remaining
subpath of Q. Hence, the length of P is at most that of Q.

Therefore,

R(T̂k(u)) ≤ max
x∈V(T̂k(u))

d
T̂k(u)

(u′0, x) ≤ max
x∈V(Sk(u))

d
T̂n
(u0, x) = R(Sk(u))

Thus, we also have R(g(Tk(u))) ≤ R(Sk(u)) in this case.

4 A Lower Bound for Minor Transformations

In view of Theorem 3.1 in the previous section, we consider only minor transformations for complete
binary trees.

Definition 4.1 (Optimal distortion for minor transformation) We define α ≥ 1 to be the
smallest constant such that for any instance of the SPR Problem, there exists a minor transforma-
tion that achieves distortion at most α.

Observe that the algorithm given by Gupta [8] indeed produces a minor with distortion at most
8. Hence, the constant α is at most 8. We prove the following theorem, which implies that the
constant α ≥ 8.

Theorem 4.2 For any ε > 0, the constant α ≥ 8− ε.

Hence, combining Theorems 3.1 and 4.2, we obtain the result of Theorem 1.1, which states that:

For any ε > 0, there exists an instance of the Steiner Point Removal Problem with
distortion at least 8− ε.

We first introduce some notation. Without causing ambiguity, we use d(u, v) to denote the
distance between nodes u and v in the original tree T , and path(u, v) to denote the subset of
vertices lying on the unique path between u and v in T . Let v be a vertex in Tn. We denote the
subtree rooted at v by T (v), which is identical to Tn−d(rn,v). For u, v ∈ L(T ), we use df (u, v) to
denote the distance between them after the transformation f is applied to the tree.
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Definition 4.3 Given a minor mapping f : V(T ) → L(T ), a vertex v is a normal vertex (with
respect to f) if v is an ancestor of f(v).

Consider a normal vertex v and suppose u = f(v). Then, v is an ancestor of u and all the
vertices along the path from v to u are mapped to u. Recall that T (v) has two branches rooted at
v. We wish to measure how far vertices down the branch not containing u are mapped to u under
f .

Definition 4.4 For each normal vertex v, its expanding parameter with respect to some minor
mapping f is defined to be

ρf (v) := max{
d(v, w)

d(v, f(v))
: w ∈ T (v), f(w) = f(v), path(v, f(v)) ∩ path(v, w) = {v}}.

Since our lower bound is obtained from large trees, we consider how the expanding parameter
behaves for large values of n.

Definition 4.5 For each n ∈ N, let

ρn := max{ρf (rn) |minor mapping f : Tn → L(Tn), D(f) ≤ α}.

Define
ρ := lim sup

n→∞
ρn. (4.7)

Observe that since ρn ∈ [0, 1], it follows the limit supremum ρ ∈ [0, 1]. We show in the next claim
that ρ is strictly less than 1.

Claim 4.6 The limit supremum ρ < 1.

Proof: Assume on the contrary that ρ = 1. Then, by the definition of limit supremum ρ, there
exists an integer n such that ρn ≥ 7/8. Thus by the definition of ρn, there exists a minor mapping
f on Tn with D(f) ≤ α such that ρf (rn) ≥ 7/8.

Let w be a vertex that attains ρf (rn). Since every leaf of Tn is mapped into itself and w 6= f(w),
w is not a leaf. Then let p and q be two leaves from different branches of the subtree T (w). Thus
d(p, q) = 2(1 − ρf (rn))n ≤ n/4. On the other hand, df (p, q) = df (p, f(w)) + df (f(w), q) ≥ 4n.

Thus D(f) ≥
df (p,q)
d(p,q) ≥

4n
n/4 ≥ 16, contradicting D(f) ≤ α ≤ 8. Thus ρ < 1.

The following lemma shows the relationship between the expanding parameter ρn and the
distorted distance df . Intuitively, if the expanding parameters for normal vertices of large heights
are small, then there exists some vertex whose distorted distance to the image of the root is large.

Lemma 4.7 Suppose 0 < β < 1 and N0 ∈ N such that for any integer n > N0, the expanding
parameter ρn ≤ β. Then, for any real 0 < ε < 1, there exists integer N > N0 such that for any
integer m ≥ N and any minor mapping f on tree Tm with distortion D(f) ≤ α, there exists a leaf
p in Tm such that the distorted distance

df (p, f(rm)) ≥
2m

β
(1− ε).

Furthermore, if ρf (rm) > 0, then D(f) ≥ 2(1−ε)
β(1−ρf (rm)) .
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Proof: Given any real ε > 0, fix a large enough integer k such that (1− β)k ≤ ε
2 . Let N be large

enough such that k
N ≤ ε

2 and (1− β)k(N + 1
β )−

1
β > N0.

Let m ≥ N and let f be a minor mapping on Tm with D(f) ≤ α. We define sequences of vertices
{vi}

k
i=0 and {wi}

k−1
i=0 in Tm as follows. Let v0 = rm, and w0 be the vertex that attains ρf (v0) under

the minor mapping f with D(f) ≤ α. For 1 ≤ i ≤ k, let vi be a child of vertex wi−1 such that
f(wi−1) /∈ T (vi), and hence vi is normal. Let wi be the vertex that attains ρf (vi), for 1 ≤ i < k.
Let hi be the height of T (vi) for 0 ≤ i ≤ k.

Claim 4.8 For 0 ≤ i < k, the height hi ≥ (1− β)i(m+ 1
β )−

1
β > N0.

Proof of Claim 4.8: The claim is trivial for i = 0. Assume that hi−1 ≥ (1−β)i−1(m+ 1
β )−

1
β >

N0, for some 0 < i < k. Observe that hi+1+ρf (vi−1)hi−1 = hi−1 and ρf (vi−1) ≤ β, since hi−1 > N0.
Then hi = (1−ρf (vi−1))hi−1−1 ≥ (1−β){(1−β)i−1(m+ 1

β )−
1
β}−1 = (1−β)i(m+ 1

β )−
1
β > N0.

Thus, we set p := f(vk) and from Claim 4.8, we have

df (f(rm), p) = 2
k−1∑

i=0

hi ≥ 2
k−1∑

i=0

{(1− β)i(m+
1

β
)−

1

β
}

= 2(m+
1

β
)
1− (1− β)k

β
−

2k

β
≥

2m

β
· {1− (1− β)k −

k

m
}

≥
2m

β
(1− ε),

(4.8)

where the last inequality follows from (1− β)k ≤ ε
2 and k

m ≤ k
N ≤ ε

2 .
Furthermore, if ρf (rm) > 0, then m · ρf (rm) > 0. Thus w0 is a proper descendant of rm. Note

that p is a leaf of T (w0) and T (w0) has two branches. Thus by symmetry, there exists another leaf q
such that p and q are in the different branches of T (w0) and df (q, f(rm)) ≥ 2m

β (1−ε). Observing that

f(w0) = f(rm), the distorted distance df (p, q) = df (p, f(rm)) + df (f(rm), q) ≥ 4m
β (1− ε), and the

original distance d(p, q) = 2m(1− ρf (rm)). Therefore, the distortion D(f) ≥
df (p,q)
d(p,q) ≥

2(1−ε)
β(1−ρf (rm)) .

Using Lemma 4.7, we can show that the limit supremum ρ > 0.

Claim 4.9 The limit supremum ρ > 0.

Proof of Lemma 4.9: On the contrary, suppose ρ = 0. Let β = 1/32. By the definition
of limit supremum ρ, there exists N0 such that for any n > N0, ρn < β. Then by Lemma 4.7, for
ε = 1/2, there exists m > N0 such that for any minor mapping f on Tm with D(f) ≤ α, there exists

a leaf p in Tm such that df (p, f(rm)) ≥ 2m
β (1− ε) = m

β . Thus D(f) ≥
df (p,f(rm))
d(p,f(rm)) ≥

m
2mβ = 1

2β = 16,

which contradicts D(f) ≤ α ≤ 8. Thus ρ > 0.
Now, we are ready to prove the main theorem of this section.
Proof of Theorem 4.2:
Let ε > 0. Without loss of generality, we can assume ε < 1. Suppose on the contrary, we have

α < 8− ε.
Since 0 < ρ < 1, let ε1 < min{ε/48, ρ} be a positive small constant such that ρ + ε1 < 1. By

the definition of limit supremum ρ, there exists N0 > 0 such that for all n > N0, ρn < ρ+ ε1. Then
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by Lemma 4.7, for ε2 = ε/24 there exists N such that for any m ≥ N and any minor mapping f

on tree Tm with distortion D(f) ≤ α and ρf (rm) > 0 we have D(f) ≥ 2(1−ε2)
(ρ+ε1)(1−ρf (rm)) .

By the definition of limit supremum ρ, there exists arbitrarily large m such that ρm > ρ−ε1 > 0.
Hence, we can choose m such that m > N . By the definition of ρm, there exists a minor mapping
f on tree Tm with distortion D(f) ≤ α and ρf (rm) = ρm > ρ− ε1 > 0. Thus, the constant α is at
least

D(f) ≥ 2(1−ε2)
(ρ+ε1)(1−ρf (rm))

≥ 2(1−ε2)
(ρ+ε1)(1−(ρ−ε1)) ≥

8(1−ε2)
(1+2ε1)2

(The denominator is minimized when ρ = 1
2 .)

≥ 8(1−ε2)
(1+ε2)2

≥ 8(1− 3ε2) (Note that 2ε1 ≤ ε2; since ε2 ≥ 0, 1−ε2
(1+ε2)2

≥ 1− 3ε2)

= 8− ε,

obtaining the desired contradiction. Hence, for all ε > 0, the constant α ≥ 8− ε.

5 Open Problems

We conclude the paper by outlining some directions for future work.

1. Of course one final goal would be to consider the SPR problem on general graphs. Formally,
there are two main questions to be addressed: (1) we would like to determine what is the
smallest α (possibly depending on the size of input), such that given any edge weighted
graph G = (V,E) and a set of terminals S ⊂ V , there is a way to remove non-terminals
by edge contractions to produce a minor H = (S,E ′) where for any pair of terminals (u, v),
dG(u, v) ≤ dH(u, v) ≤ α · dG(u, v); and (2) we would like to devise a constructive algorithm
that outputs such a minor H = (S,E ′) with distortion at most α. Since this task may prove
to be quite hard to accomplish on general graphs, one could first consider other restricted
classes of graphs — such as outerplanar graphs, planar graphs, series-parallel graphs, etc. —
as an intermediate step. Note that no algorithm with proven nontrivial bounds on distortion
for these classes of graphs is known.

2. Another interesting question would be to be able to determine the approximation bound on
the optimal distortion of a given algorithm for the SPR problem. For example, it would be
interesting to determine, given any instance of the SPR problem on trees, how far from the
optimal distortion for that instance can the distortion obtained by Gupta’s algorithm [8] be
(in that paper, Gupta only shows an absolute bound on the distortion of his algorithm; this
paper confirms that for some instances of the problem, this is the best distortion possible).

3. We can also ask a similar question as that in Problem 1 in a probabilistic framework. What is
the smallest α such that given any weighted graph G = (V,E) and a set of terminals T ⊂ V ,
there exists a distribution H of minors {H = (T,E ′)} such that dG(u, v) ≤ EH[dH(u, v)] ≤
α · dG(u, v)? This task may be easier to accomplish than that in Problem 1, since some
upper bounds on α under a probabilistic framework exist in the literature. For example, it
follows from [3] that k-outerplanar graph can be embedded into a probability distribution over
spanning trees with O(ck) distortion for some absolute constant c, implying that α = O(ck) for
k-outerplanar graphs; and a recent result in [5], shows that for general graphs, α = O(log2 n),
where n = |V |. Can we do any better?
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