
Separators (1988, 1999; Leighton, Rao)

Goran Konjevod, Arizona State University, thrackle.eas.asu.edu

entry editor: Chandra Chekuri

INDEX TERMS: separators, balanced cuts, multicommodity max-flow min-cut
theorems, sparsest cut, graph partitioning, minimum cut linear arrangement,
bisection, feedback arc set, elimination orderings, approximation algorithms, `1-
embeddings

SYNONYMS: balanced cuts

1 PROBLEM DEFINITION

The (balanced) separator problem asks for a cut of minimum (edge)-weight in a graph, such
that the two shores of the cut have approximately equal (node)-weight.

Formally, given an undirected graph G = (V, E), with a nonnegative edge-weight function
c : E → R+, a nonnegative node-weight function π : V → R+, and a constant b ≤ 1/2, we
say a cut (S : V \ S) is b-balanced, or a (b, 1− b)-separator, if bπ(V) ≤ π(S) ≤ (1− b)π(V)
(where we write π(S) for

∑
v∈S π(v)).

Problem 1 (b-balanced separator). Input: Edge- and node-weighted graph G = (V, E, c, π),
constant b ≤ 1/2.
Output: A b-balanced cut (S : V \ S). Goal: minimize the edge weight c(δ(S)).

Closely related is the product sparsest cut problem.

Problem 2 ((Product) Sparsest cut). Input: Edge- and node-weighted graph G = (V, E, c, π).

Output: A cut (S : V \ S) minimizing the ratio-cost c(δ(S))
π(S)π(V \S)

.

Problem 2 is the most general version of sparsest cut solved by Leighton and Rao. Setting
all node weights are equal to 1 leads to the uniform version, Problem 3.

Problem 3 ((Uniform) Sparsest cut). Input: Edge-weighted graph G = (V, E, c).

Output: A cut (S : V \ S) minimizing the ratio-cost c(δ(S))
|S||V \S| .

Sparsest cut arises as the (integral version of the) linear programming dual of concurrent
multicommodity flow (Problem 4). An instance of a multicommodity flow problem is defined
on an edge-weighted graph by specifying for each of k commodities a source si ∈ V , a sink
ti ∈ V , and a demand Di. A feasible solution to the multicommodity flow problem defines
for each commodity a flow function on E, thus routing a certain amount of flow from si to ti.
The edge weights represent capacities, and for each edge e, a capacity constraint is enforced:
the sum of all commodities’ flows through e is at most the capacity c(e).

1

Problem 4 (Concurrent multicommodity flow). Input: Edge-weighted graph G = (V, E, c),
commodities (s1, t1, D1), . . . (sk, tk, Dk).
Output: A multicommodity flow that routes fDi units of commodity i from si to ti for each
i simultaneously, without violating the capacity of any edge. Goal: maximize f .

Problem 4 can be solved in polynomial time by linear programming, and approximated
arbitrarily well by several more efficient combinatorial algorithms (Section 2.2). The max-
imum value f for which there exists a multicommodity flow is called the max-flow of the
instance. The min-cut is the minimum ratio c(δ(S))

D(S,V \S)
, where D(S, V \S) =

∑
i:|{si,ti}∩S|=1 Di.

This dual interpretation motivates the most general version of the problem, the nonuni-
form sparsest cut (Problem 5).

Problem 5 ((Nonuniform) Sparsest cut). Input: Edge-weighted graph G = (V, E, c), com-
modities (s1, t1, D1), . . . (sk, tk, Dk).

Output: A min-cut (S : V \ S), that is, a cut of minimum ratio-cost c(δ(S))
D(S,V \S)

.

(Most literature focuses on either the uniform or the general nonuniform version, and
both of these two versions are sometimes referred to as just the “sparsest cut” problem.)

2 KEY RESULTS

Even when all (edge- and node-) weights are equal to 1, finding a minimum-weight b-balanced
cut is NP-hard (for b = 1/2, the problem becomes graph bisection). Leighton and Rao [23, 24]
give a pseudo-approximation algorithm for the general problem.

Theorem 1. There is a polynomial-time algorithm that, given a weighted graph G = (V, E, c, π),
b ≤ 1/2 and b′ < min{b, 1/3}, finds a b′-balanced cut of weight O(log n

b−b′) times the weight of
the minimum b-balanced cut.

The algorithm solves the sparsest cut problem on the given graph, puts aside the smaller-
weight shore of the cut, and recurses on the larger-weight shore until both shores of the
sparsest cut found have weight at most (1− b′)π(G). Now the larger-weight shore of the last
iteration’s sparsest cut is returned as one shore of the balanced cut, and everything else as
the other shore.

Since the sparsest cut problem is itself NP-hard, Leighton and Rao first required an
approximation algorithm for this problem.

Theorem 2. There is a polynomial-time algorithm with approximation ratio O(log p) for
product sparsest cut (Problem 2), where p denotes the number of nonzero-weight nodes in
the graph.

This algorithm follows immediately from Theorem 3.

Theorem 3. There is a polynomial-time algorithm that finds a cut (S : V \S) with ratio-cost
c(δ(S))

π(S)π(V \S)
∈ O(f log p), where f is the max-flow for the product multicommodity flow and p

the number of nodes with nonzero weight.

The proof of Theorem 3 is based on solving a linear programming formulation of the
multicommodity flow problem and using the solution to construct a sparse cut.

2

2.1 Related results

Shahrokhi and Matula [27] gave a max-flow min-cut theorem for a special case of the mul-
ticommodity flow problem and used a similar LP-based approach to prove their result. An
O(log n) upper bound for arbitrary demands was proved by Aumann and Rabani [6] and
Linial et al [26]. In both cases, the solution to the dual of the multicommodity flow linear
program is interpreted as a finite metric and embedded into `1 with distortion O(log n),
using an embedding due to Bourgain [10]). The resulting `1 metric is a convex combination
of cut metrics, from which a cut can be extracted with sparsity ratio at least as good as that
of the combination.

Arora et al [5] gave an O(
√

log n) pseudo-approximation algorithm for (uniform or product-
weight) balanced separators, based on a semidefinite programming relaxation. For the
nonuniform version, the best bound is O(

√
log n log log n) due to Arora et al [4]. Khot

and Vishnoi [18] showed that, for the nonuniform version of the problem, the semidefinite
relaxation of [5] has an integrality gap of at least (log log n)1/6−δ for any δ > 0, and further,
assuming their Unique Games Conjecture, that it is NP-hard to (pseudo)-approximate the
balanced separator problem to within any constant factor. The SDP integrality gap was
strengthened to Ω(log log n) by Krauthgamer and Rabani [20]. Devanur et al [11] show an
Ω(log log n) integrality gap for the SDP formulation even in the uniform case.

2.2 Implementation

The bottleneck in the balanced separator algorithm is solving the multicommodity flow
linear program. There exists a substantial amount of work on fast approximate solutions to
such linear programs [19, 22, 25]. In most of the following results, the algorithm produces a
(1 + ε)-approximation, and its hidden constant depends on ε−2. Garg and Könemann [15],
Fleischer [14] and Karakostas [16] gave efficient approximation schemes for multicommodity
flow and related problems, with running times Õ((k+m)m) [15] and Õ(m2) [14, 16]. Benczúr
and Karger [7] gave an O(log n) approximation to sparsest cut based on randomized minimum
cut and running in time Õ(n2). The current fastest O(log n) sparsest cut (balanced separator)
approximation is based on a primal-dual approach to semidefinite programming due to Arora
and Kale [3], and runs in time O(m+n3/2) (Õ(m+n3/2), respectively). The same paper gives
an O(

√
log n) approximation in time O(n2) (Õ(n2), respectively), improving on a previous

Õ(n2) algorithm of Arora et al [2]. If an O(log2 n) approximation is sufficient, then sparsest
cut can be solved in time Õ(n3/2), and balanced separator in time Õ(m + n3/2) [17].

3 APPLICATIONS

Many problems can be solved by using a balanced separator or sparsest cut algorithm as a
subroutine. The approximation ratio of the resulting algorithm typically depends directly on
the ratio of the underlying subroutine. In most cases, the graph is recursively split into pieces
of balanced size. In addition to the O(log n) approximation factor required by the balanced
separator algorithm, this leads to another O(log n) factor due to the recursion depth. Even
et al [12] improved many results based on balanced separators by using spreading metrics,
reducing the approximation guarantee to O(log n log log n) from O(log2 n).

Some applications are listed here; where no reference is given, and for further examples,
see [24].

3

• Minimum cut linear arrangement and minimum feedback arc set. One single algorithm
provides an O(log2 n) approximation for both of these problems.

• Minimum chordal graph completion and elimination orderings [1]. Elimination order-
ings are useful for solving sparse symmetric linear systems. The O(log2 n) approxima-
tion algorithm of [1] for chordal graph completion has been improved to O(log n log log n)
by Even et al [12].

• Balanced node cuts. The cost of a balanced cut may be measured in terms of the
weight of nodes removed from the graph. The balanced separator algorithm can be
easily extended to this node-weighted case.

• VLSI layout. Bhatt and Leighton [8] studied several optimization problems in VLSI
layout. Recursive partitioning by a balanced separator algorithm leads to polylogarith-
mic approximation algorithms for crossing number, minimum layout area and other
problems.

• Treewidth and pathwidth. Bodlaender et al [9] showed how to approximate treewidth
within O(log n) and pathwidth within O(log2 n) by using balanced node separators.

• Bisection. Feige and Krauthgamer [13] gave an O(α log n) approximation for the min-
imum bisection, using any α-approximation algorithm for sparsest cut.

4 EXPERIMENTAL RESULTS

Lang and Rao [21] compared a variant of the sparsest cut algorithm from [24] to methods
used in graph decomposition for VLSI design.

5 CROSS REFERENCES

None is reported. Entry editors please feel free to add some.

6 RECOMMENDED READING

Further details and pointers to additional results may be found in the survey [28].

[1] A. Agrawal, P. N. Klein, and R. Ravi. Cutting down on fill using nested dissection:
provably good elimination orderings. In Graph theory and sparse matrix computation,
IMA Volumes in mathematics and its applications, pages 31–55. Springer, 1993.

[2] S. Arora, E. Hazan, and S. Kale. Fast algorithms for approximate semide.nite program-
ming using the multiplicative weights update method. In FOCS ’05: Proceedings of the
46th Annual IEEE Symposium on Foundations of Computer Science, pages 339–348,
Washington, DC, USA, 2005. IEEE Computer Society.

[3] S. Arora and S. Kale. A combinatorial, primal-dual approach to semidefinite programs.
In STOC ’06: Proceedings of the thirty-eighth annual ACM symposium on Theory of
computing, New York, NY, USA, 2007. ACM Press.

4

[4] S. Arora, J. R. Lee, and A. Naor. Euclidean distortion and the sparsest cut. In STOC
’05: Proceedings of the thirty-seventh annual ACM symposium on Theory of computing,
pages 553–562, New York, NY, USA, 2005. ACM Press.

[5] S. Arora, S. Rao, and U. Vazirani. Expander flows, geometric embeddings and graph
partitioning. In STOC ’04: Proceedings of the thirty-sixth annual ACM symposium on
Theory of computing, pages 222–231, New York, NY, USA, 2004. ACM Press.

[6] Y. Aumann and Y. Rabani. An (log) approximate min-cut max-flow theorem and
approximation algorithm. SIAM J. Comput., 27(1):291–301, 1998.

[7] A. A. Benczúr and D. R. Karger. Approximating s-t minimum cuts in Õ(n2)
time. In STOC ’96: Proceedings of the twenty-eighth annual ACM symposium on
Theory of computing, pages 47–55, New York, NY, USA, 1996. ACM Press.

[8] S. N. Bhatt and F. T. Leighton. A framework for solving vlsi graph layout problems.
J. Comput. Syst. Sci., 28(2):300–343, 1984.

[9] H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson, and T. Kloks. Approximat-
ing treewidth, pathwidth, frontsize, and shortest elimination tree. J. Algorithms,
18(2):238–255, 1995.

[10] J. Bourgain. On Lipshitz embedding of finite metric spaces in Hilbert space. Israel J.
Math., 52:46–52, 1985.

[11] N. R. Devanur, S. A. Khot, R. Saket, and N. K. Vishnoi. Integrality gaps for sparsest
cut and minimum linear arrangement problems. In STOC ’06: Proceedings of the
thirty-eighth annual ACM symposium on Theory of computing, pages 537–546, New
York, NY, USA, 2006. ACM Press.

[12] G. Even, J. S. Naor, S. Rao, and B. Schieber. Divide-and-conquer approximation
algorithms via spreading metrics. J. ACM, 47(4):585–616, 2000.

[13] U. Feige and R. Krauthgamer. A polylogarithmic approximation of the minimum
bisection. In FOCS ’00: Proceedings of the 41st Annual Symposium on Foundations of
Computer Science, page 105, Washington, DC, USA, 2000. IEEE Computer Society.

[14] L. Fleischer. Approximating fractional multicommodity flow independent of the num-
ber of commodities. In FOCS ’99: Proceedings of the 40th Annual Symposium on
Foundations of Computer Science, page 24, Washington, DC, USA, 1999. IEEE Com-
puter Society.

[15] N. Garg and J. Koenemann. Faster and simpler algorithms for multicommodity flow
and other fractional packing problems. In FOCS ’98: Proceedings of the 39th Annual
Symposium on Foundations of Computer Science, page 300, Washington, DC, USA,
1998. IEEE Computer Society.

[16] G. Karakostas. Faster approximation schemes for fractional multicommodity flow
problems. In SODA ’02: Proceedings of the thirteenth annual ACM-SIAM sympo-
sium on Discrete algorithms, pages 166–173, Philadelphia, PA, USA, 2002. Society for
Industrial and Applied Mathematics.

5

[17] R. Khandekar, S. Rao, and U. Vazirani. Graph partitioning using single commodity
flows. In STOC ’06: Proceedings of the thirty-eighth annual ACM symposium on
Theory of computing, pages 385–390, New York, NY, USA, 2006. ACM Press.

[18] S. Khot and N. K. Vishnoi. The unique games conjecture, integrality gap for cut
problems and embeddability of negative type metrics into l1. In FOCS, pages 53–62,
2005.

[19] P. N. Klein, S. A. Plotkin, C. Stein, and É. Tardos. Faster approximation algorithms
for the unit capacity concurrent flow problem with applications to routing and finding
sparse cuts. SIAM J. Comput., 23(3):466–487, 1994.

[20] R. Krauthgamer and Y. Rabani. Improved lower bounds for embeddings into l1. In
SODA ’06: Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete
algorithm, pages 1010–1017, New York, NY, USA, 2006. ACM Press.

[21] K. Lang and S. Rao. Finding near-optimal cuts: an empirical evaluation. In SODA
’93: Proceedings of the fourth annual ACM-SIAM Symposium on Discrete algorithms,
pages 212–221, Philadelphia, PA, USA, 1993. Society for Industrial and Applied Math-
ematics.

[22] F. T. Leighton, F. Makedon, S. A. Plotkin, C. Stein, É. Stein, and S. Tragoudas. Fast
approximation algorithms for multicommodity flow problems. J. Comput. Syst. Sci.,
50(2):228–243, 1995.

[23] T. Leighton and S. Rao. An approximate max-flow min-cut theorem for uniform
multicommodity flow problems with applications to approximation algorithms. In
Proceedings of the 29th Annual Symposium on Foundations of Computer Science, pages
422–431, 1988.

[24] T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and their use in
designing approximation algorithms. J. ACM, 46(6):787–832, 1999.

[25] T. Leong, P. Shor, and C. Stein. Implementation of a combinatorial multicommodity
flow algorithm. In DIMACS Series in Discrete Mathematics and Theoretical Computer
Science Volume 12: Network flows and matching, pages 387–406. DIMACS, 1991.

[26] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of its
algorithmic applications. Combinatorica, 15(2):215–245, 1995.

[27] F. Shahrokhi and D. W. Matula. The maximum concurrent flow problem. J. ACM,
37(2):318–334, 1990.

[28] D. B. Shmoys. Cut problems and their applications to divide-and-conquer. In D. S.
Hochbaum, editor, Approximation algorithms for NP-hard problems, pages 192–235.
PWS Publishing Company, 1997.

6

