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Abstract. We present fully distributed algorithms for random sampling
of nodes in peer-to-peer systems, extending and generalizing the work of
King and Saia [Proceedings of PODC 2004] from simple Chord-like dis-
tributed hash tables to systems based on higher-dimensional hierarchical
constructions, like Content Addressable Networks (CAN). We also show
preliminary results on the generalization of the problem to biased sam-
pling. In addition, we provide an extension of CAN that requires only
O(1) space per node and achieves O(log n) lookup latency and message
complexities.

1 Introduction

A distributed algorithm for random sampling of nodes in a peer-to-peer network
provides a basic ingredient for the solution of several important problems, in-
cluding load-balancing, Byzantine agreement and computing various statistics
on data availability.

King and Saia [6] present a fully-distributed algorithm with expected log-
arithmic message complexity that with high probability (at least 1 − O(1/n))
chooses a peer with exactly uniform distribution (i.e. with probability 1/n).
Both the expected latency (in terms of the number of links in the overlay net-
work followed by the algorithm) and message complexity of their algorithm are
logarithmic in the number of nodes. The algorithm does not assume any knowl-
edge of the number of nodes n in the network. Their algorithm requires a peer-
to-peer network with properties similar to those of Chord [11], in particular a
one-dimensional circular keyspace.

In some applications, such as as peer-to-peer photo sharing and massively
multiplayer games, multidimensional range-queries are critical, and the overlay
network should support higher dimensional range queries [4]. Several structured
overlay systems based on the geometry of two- or higher-dimensional space have
been proposed, including CAN [9]. In this paper, we provide an efficient mech-
anism for uniform random sampling in peer-to-peer overlay networks of higher
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dimensions. Our work applies to peer-to-peer systems with properties similar to
those of CAN.

The algorithm of King and Saia is based on a procedure to associate with
each peer a part of the keyspace so that (a) the parts assigned to different
peers are disjoint, (b) the measure of the part assigned to each peer is exactly
the same, and (c) a constant fraction of the total keyspace is assigned to the
peers. These properties reduce the problem of peer sampling to that of sampling
of points in the keyspace, because it ensures that only an expected constant
number of random keys must be sampled before one is generated that lies in a
region belonging to some peer.

It may be possible to generalize this algorithm directly to multiple dimensions
by assigning to peers disjoint regions of the keyspace. A natural idea would
be to assign to each peer its region in the Voronoi diagram of the set of peer
nodes. However, even on a line, the distances between consecutive points in a
set of n uniformly generated points vary with high probability from Θ(1/n2) to
Θ(lnn/n) [6]. Thus the Voronoi regions need to be patched to give each peer an
equal-area region and the resulting structure very quickly becomes prohibitively
complex, even in two dimensions.

The reader may already have noticed a direct reduction of our problem to
the one-dimensional case: concatenate the coordinates of a node’s ID (assumed
to be binary sequences) to get a single binary sequence. If each coordinate is
uniformly distributed, then so is the resulting sequence. These sequences define
coordinates of the nodes on a circle (ring). Building an overlay network (say,
Chord) on top of this circle allows one to directly use the algorithm of King
and Saia. This effectively creates two overlays: a multi-dimensional one based
on the original node coordinates, which allows multi-dimensional queries, and a
one-dimensional one that allows random sampling.

There are two main problems with the approach above. First, it creates
unnecessary overhead by the need of building and maintaining a second one-
dimensional overlay network to be used just for sampling. Second, since the ran-
dom sampling will be done via the auxiliary one-dimensional overlay network,
which does not take into account the proximity of the nodes in the multidimen-
sional space, the expected latency of the algorithm may no longer be logarithmic
with respect to the original multidimensional overlay network.

Hence, in contrast to this simplistic approach, we use the Hilbert space-filling
curve [10] to map the multi-dimensional keyspace into a circle, and a single multi-
dimensional overlay (say, CAN) to implement a routing table and other functions
useful for the peer-to-peer network, including those needed for the sampling
algorithm itself. Our goal is to assign to each peer a part of the keyspace of equal
volume, while keeping these parts disjoint and large enough to jointly cover a
constant fraction of the whole keyspace. Thanks to the properties of the Hilbert
curve, contiguous segments of the circle correspond to connected regions in the
original keyspace. This means that any basic step of the algorithm that searches
linearly through a bounded number of peers along the circle will only have to
consider a bounded connected region in the original keyspace, thereby ensuring



low latency (logarithmic in the number of nodes) in terms of the number of links
followed in the multi-dimensional overlay network, unlike the simplistic solution
above. In addition to this advantage, the use of a “native” overlay allows for
the implementation of basic functions in the overlay network using the stronger
geometric properties of the multidimensional space.

1.1 Our contributions

Given a fully decentralized peer-to-peer network in a multidimensional keyspace,
we consider the problem of distributed random sampling of peer nodes. We
assume that peers correspond to uniformly distributed points in a d-dimensional
keyspace. We show that the one-dimensional sampling algorithm of King and
Saia can be generalized to hierarchical systems with multidimensional keyspaces.

The sampling algorithm for the one-dimensional case relies on a basic function
next that, given a peer, returns the next peer along the circle. In addition to
this, the algorithm requires the ability to find the location of a given peer on the
circle and to compute the measure of an interval between two given points. All
we need assume is that the functions listed above can be computed efficiently
by the peer-to-peer system, in other words, that the peer-to-peer system we use
is compatible with the Hilbert curve. Our main result is stated in the theorem
below:

Theorem 1. Given a peer-to-peer d-dimensional keyspace satisfying the prop-
erties above, the algorithm Choose A Random Peer selects each peer with
probability exactly 1/n, with high probability. The algorithm has expected latency
O(tlookup + log n) and sends O(mlookup + log n) messages, where tlookup and
mlookup are the latency and message complexities of lookup. In particular, a CAN
can be implemented so that for any dimension d, tlookup = mlookup = O(log n),
and O(1) routing items in each peer are maintained for lookup. Therefore, in
CAN the latency and message complexity of our algorithm are both O(log n) in
expectation.

2 Background and related work

2.1 The Hilbert curve

G. Peano discovered the first curve that passes through every point of a closed
square [7], but one of the first graphical representations of such a space-filling
curve was given by David Hilbert [5]. Space-filling curves are useful for reducing
a multi-dimensional problem to a one-dimensional problem, and in this role have
found uses in other contexts [3].

The Hilbert space-filling curve is a continuous mapping from the unit interval
[0, 1] onto the unit hypercube [0, 1]d. It can be constructed recursively. First the
d-dimensional cube is partitioned into 2d congruent subcubes and accordingly,
the unit interval into 2d congruent subintervals. Then each subinterval is mapped
onto a distinct subcube, and adjacent subintervals are mapped onto adjacent



subcubes with a common facet. The example for 2 dimensions are presented in
Figure 1(a). The same algorithm is applied to each subcube and its corresponding
subinterval. The subinterval in each subcube is rotated and reflected so that
it can connect to the preceding one to form a single continuous unit interval.
Figure 1(b) shows the second step of the construction in 2 dimensions. Albert [2]
provides a mathematical formalism for the Hilbert curve in arbitrary dimension
d.
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Fig. 1. The Generation of 2 Dimensional Hilbert Curve

We list several properties about the Hilbert curve in the following:

Proposition 1. Each interval [0.b1b2..bi, 0.b1b2..bi + 2−i] of the curve fills a
region of volume 2−i, where i ∈ N , and bj = 0, 1, for j = 1..i. We label this
region by the i-digit binary sequence b1b2..bi. Moreover, the region is a hyper-
rectangle which can be split into two congruent sub-hyper-rectangles labeled by
b1b2..bi0 and b1b2..bi1.

In fact, we will think of the unit hypercube [0, 1]d as a wrapped d-torus,
identifying for each coordinate i every pair of points x, y ∈ [0, 1]d such that
|xi − yi| = 1 and xj = yj for i 6= j, and the Hilbert curve [0, 1] as a unit circle.

Proposition 2. For any two regions labeled as A = a1a2..ai, B = b1b2..bj,
(i ≤ j), if A is a prefix of B, then region A contains region B. If A is not a
prefix of B, then the intersection of these two regions has volume of 0.

Furthermore if 0.a1a2..ai + 2−i = 0.b1b2..bj, or 0.b1b2..bj + 2−j = 0.a1a2..ai,
i.e. their mapped intervals on the curve are connected, then regions A and B
share a (d − 1)-dimensional facet with positive (d − 1)-dimensional volume.

Proposition 3. A random process of n points uniformly distributed on the
Hilbert curve is equivalent to a random process of n points uniformly distributed
in the unit hypercube according to the Hilbert curve mapping.

2.2 CAN: a d-dimensional peer-to-peer network

CAN (Content-Addressable Network)[9] is a peer-to-peer system which takes a
d-dimensional Cartesian coordinate space as the keyspace for its distributed hash



table. The coordinate space is partitioned into hyper-rectangles, called zones, and
each peer is responsible for a zone. Then a key is stored in the peer whose zone
contains the key point. For example, Figure 2 shows a 2-dimensional [0, 1]× [0, 1]
coordinate space with 6 peers.
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Fig. 2. A 2-Dimensional CAN with 6
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Fig. 3. The Binary Partition Tree for
the CAN in Figure 2

Each peer maintains a routing table of all its neighbors in the coordinate
space. Two peers are neighbors if they share a (d − 1)-dimensional facet. Given
a key, the lookup operation, or routing, in CAN is implemented by following the
straight-line path through the coordinate space from the inquiring peer to the
peer storing the key — that is, a peer will forward the lookup message through
the peers responsible for the regions crossed by the respective straight-line path.
Thus each peer maintains 2d neighbors and the average routing path length is
(d/4)(n1/d).

To join the network, a new peer first selects a random key point, and asks
an existing peer to find the peer p who stores the key point. Then peer p will
split its zone in half according to a given order of the dimensions, keeping one
half of the zone assigned to itself and assigning the other half to the new peer.

We adapt the process by which CAN splits a zone to add a new peer to
match the construction of the Hilbert curve. First, the whole key space [0, 1]d

can be partitioned into two zones labeled by 0 and 1. Then by Proposition 1,
a zone assigned to a peer p and labeled by b1b2..bi can be partitioned into two
equally-sized zones labeled by b1b2..bi0 and b1b2..bi1. The peer p will keep the
half zone labeled by b1b2..bi0 and assign the other half labeled b1b2..bi1 to the
new peer. Therefore we have the following lemma:

Lemma 1. The whole key space is partitioned into zones labeled by binary se-
quences. The zone labeled by b1b2..bi is filled by an interval [0.b1b2..bi, 0.b1b2..bi +
2−i] of the Hilbert curve. Therefore these intervals also partition the Hilbert
curve.

Thus each zone is labeled by a unique binary sequence. We will also use
the zone’s label to identify the peer responsible for the zone. By Lemma 1, the



Hilbert curve is partitioned into intervals, each of which fills a distinct zone.
Therefore, we have the following Lemma:

Lemma 2. Given a peer labeled by A = a1a2..ai, there exists one and only one
peer labeled by B = b1b2..bj such that 0.a1a2..ai + 2−i = 0.b1b2..bj. Peers A and
B are neighboring regions in the coordinate space.

We call peer B the next peer of A, denoted by B = next(A).
The routing scheme of CAN provided in [9] is a simple greedy routing in

which the average routing path length is (d/4)(n1/d). In fact, we can improve
the expected routing path length to O(log n) by maintaining only O(1) routing
items at each node. We will maintain a binary tree that mimics the partitions
performed by CAN1.

We maintain a binary partition tree with n leaves according to the keyspace
partition. Figure 3 illustrates the binary partition tree for the network shown
in Figure 2. Each leaf of the binary tree corresponds to an existing zone (peer).
Each inner node of the tree represents a zone that no longer exists, but was split
at some previous time. The children of a tree node are the two zones into which
it was split.

On the other hand, let each existing peer represent its corresponding leaf and
the inner node that was split when the peer joined the network. Thus we have

Lemma 3. The binary partition tree for CAN can be maintained with only O(1)
routing items in each peer.

Now we show that the binary partition tree is well balanced.

Lemma 4. The binary partition tree for CAN with n peers has C1 log n ≤
d1(n) ≤ d2(n) ≤ C2 log n with high probability, where C1 < 1 and C2 > 2
are constants, d1(n) is the distance from the root to the closest leaf, and d2(n)
is the depth of the tree.

Proof. (1) C1 log n ≤ d1(n):Consider the full binary tree T with C1 log n depth.
The nC1 leaves of tree T are considered as bins and the n peers as balls. Let X
count the number of balls in a certain bin. Thus E(X) = n1−C1 . By Chernoff
bound, for any 0 < δ < 1, Pr{X < (1−δ)E(X)} < exp(−E(X)δ2/2). By setting
(1 − δ)E(X) = 1/2, i.e. δ = 1 − 1/(2n1−C1), we have

Pr{X < 1/2} < exp(−n1−C1(1 − 1/(2n1−C1))2/2)

< exp(−n1−C1/8) (For C1 < 1, 1 − 1/(2n1−C1) > 1/2).
(1)

Now the probability that there is a bin with less than 1/2 ball is less than

nC1 ·e−n1−C1/8 < eC1 ln n−n1−C1/8, which can be arbitrarily small for any constant
C1 < 1, and n large enough. Thus with high probability the number of balls in

1 Note that this binary tree need not replace the standard greedy routing algorithm
of CAN (depending on the application, this may not be desirable). This binary tree
will be used for finding a suitable routing path during random sampling operations.



every bin is larger than or equal to 1/2, thereby larger than or equal to 1. Thus
C1 log n ≤ d1(n).

(2) d2(n) ≤ C2 log n: Consider the full binary tree T with C2 log n depth.
The nC2 leaves of tree T are considered as bins and the n peers as balls. Let X
count the number of balls in a certain bin. Thus E(X) = n1−C2 . By Chernoff
bound, for any δ > 0, we have Pr{X > (1 + δ)E(X)} < ( e

1+δ )(1+δ)E(X). By

setting (1+δ) = 2nC2−1, we have Pr{X ≥ 2} ≤ ( e
2nC2−1 )2. Thus the probability

that there is a bin with more than or equal to 2 balls is less than or equal to

nC2 · ( e
2nC2−1 )2 = e2

4nC2−2 , which can be arbitrarily small for any constant C2 > 2
and n large enough. Therefore d2(n) ≤ C2 log n.

Therefore by maintaining such a binary partition tree we can achieve the
average routing path length of O(log n) and O(1) routing items in each peer.

3 Algorithm and Analysis

3.1 Estimating the number of peers

Since we want to choose each peer with the same probability, i.e., with probability
1/n, where n is the number of peers in the network, it is clear that we must learn
n in some sense. However, it is hard to count all the peers and keep n updated
in a fully-distributed setting. Luckily, only an approximation to n is enough to
sample peers uniformly. Before presenting the main algorithm, we first describe
an algorithm by which a peer may estimate n to within a constant multiplicative
factor. This is based on [6].

First the algorithm estimates n within a constant exponent by n̂1, the inverse
of the volume of peer p’s zone. Then it sums the volume of c1 ln n̂1 peers counting
from p by the order of the next function. Finally n is estimated by the ratio of
the number of these peers over their volume summation. The tightness of the
estimation is determined by the constant c1.

The algorithm is given as follows, where vol(p) is the volume of peer p’s
zone, next(s)(p) means applying the next function s times starting from p, and
V ol(q, p) is the sum of the volumes of the peers from q to p, i.e.

V ol(q, p) =
∑

peer r s.t. 0.r ∈ [0.q, 0.p]

vol(r) (2)

Estimate n

1. n̂1 ← vol(p)−1

2. s ← c1 ln n̂1

3. t ← V ol(p, next(s)(p))
4. Return n̂2 ← s/t.

We show that the above algorithm estimates n within a constant factor,
basing our analysis on that of [6]. The main difference is that their result is
based on the assumption that the peers are uniformly distributed in a unit circle,



while in CAN each peer is responsible for a d-dimensional zone and cannot be
abstracted as a point. Nevertheless, the peer in CAN is generated by a random
key point, which allows us to generalize the analysis to work in our scenario.
Note that by Proposition 3 a random point process in the curve is equivalent to
a random point process in d-dimensions according to the Hilbert curve mapping.
while this observation is helpful, we point out that this equivalence only makes
our proof simpler, and that in CAN a random key point is just selected directly
in d-dimensions.

When a peer arrives, a random key point is generated by the random process
on the Hilbert curve. Therefore for a peer p in CAN, we define its original point
as the point on the Hilbert curve which corresponds to its random key point.

We list the notations used throughout the paper:

– For a peer p, let x(p) denote its original point on the Hilbert curve.
– For x, y on the unit circle (Hilbert curve), define the distance from x to y as

d(x, y) = y − x if y ≥ x and d(x, y) = (1 + y) − x otherwise.
– For any interval I of the unit circle, denote by numx(I) the number of

random points in I.
– For any interval I in the unit circle, denote by nump(I) the number of peers

s such that 0.s ∈ I.
– For given functions f(n) and g(n), we say that f(n) is a (γ1, γ2) approxima-

tion of g(n) if γ1g(n) ≤ f(n) ≤ γ2g(n).
– For any two peers p and q, the number of peers from q to p is given by

num(q, p) = |{peer r s.t. 0.r ∈ [0.q, 0.p]}|

Since the original points of peers in CAN are considered as a random point
process in the unit circle, we can relate the peers in CAN to their original points
and generalize the original results.

Lemma 5. For any two neighboring peers p and q, (e.g. q = next(p)), let X be
the number of original points in [0.p, 0.q]. Then E(X) = 1 − vol(p).

Proof. Let vol(p) = 2−t. Let Zi be the zone with volume 2−i that contains the
zone p, for i = 0, . . . , t − 1. Note that zone Zi is split into half when a new peer
joins and the random point falls in the region of zone Zi. Let xi be a variable to
indicate whether a random point falls in the region of zone p when zone Zi is split.
Then E(xi) = 2−t/2−i = 2i−t. Thus E(X) =

∑t−1
i=0 E(xi) = 1−2−t = 1−vol(p).

For reference, we list the lemma from [6] that we use in our proof:

Lemma 6. [6] If n points are distributed uniformly at random in the unit circle,
let α1, α2, ǫ be fixed positive constants with α1 < α2 and 0 ≤ ǫ ≤ 1/2. Let C >
144/(α1ǫ

2). Then for two any interval I on the unit circle such that Cα1 lnn ≤
numx(I) ≤ Cα2 lnn, we have C(1− ǫ)α1(ln n/n) ≤ |I| ≤ C(1+ ǫ)α2 lnn/n with
probability at least 1 − 1/n.

Lemma 7. Let α1, α2, ǫ be fixed positive constants with α1 < α2 and 0 ≤ ǫ ≤
1/2. Let C > 144/(α1ǫ

2). Then for any two peers p and q such that Cα1 lnn ≤
num(p, q) ≤ Cα2 lnn, we have 1

2 · C(1 − ǫ)α1(lnn/n) ≤ V ol(p, q) ≤ 3 · C(1 +
ǫ)α2 lnn/n with probability at least 1 − 1/n.



Proof. Let I = [0.p, 0.p + V ol(p, q)]. Since the next peer t of q has 0.t = 0.q +
vol(q) = 0.p+V ol(p, q), we have I = [0.p, 0.t]. Let nump(I) be the number of peer
s such that 0.s ∈ I, i.e. nump(I) = num(p, t). Then nump(I) = num(p, q) + 1.
Let peer r be the first peer laid down in the network such that 0.r ∈ [0.p, 0.t].

(1) 1
2 · C(1 − ǫ)α1(lnn/n) ≤ V ol(p, q)

Let I ′ = [2 · 0.p− 0.r, 2 · 0.t− 0.r]. Then |I ′| = 2|I|. For any peer s such that
0.s ∈ [0.p, 0.t], s 6= r, we have |x(s) − 0.r| ≤ 2|0.s − 0.r|. Then x(s) ∈ I ′ since
0.s ∈ [0.p, 0.t]. Thus numx(I ′) ≥ num(p, q)+1−1 ≥ Cα1 lnn. Thus by Lemma 6,
|I ′| ≥ C(1 − ǫ)α1(lnn/n). Therefore V ol(p, q) = |I| ≥ 1

2 · C(1 − ǫ)α1(ln n/n).
(2) V ol(p, q) ≤ 3 · C(1 + ǫ)α2 lnn/n
Let I ′ = [0.p′, 0.t′] where p′ and t′ be the first peer laid down in the network

such that 0.p′ ∈ [0.p, 0.r) and 0.t′ ∈ (0.r, 0.t] respectively. Then |I ′| ≥ |I|
2 .

Let numx(I ′) = x1+x2, where x1 is the number of such peers s that x(s) ∈ I ′

and 0.s ∈ I ′, and x2 is the number of such peers s that x(s) ∈ I ′ but 0.s /∈ I ′.
First we have x1 ≤ nump(I

′) ≤ nump(I) ≤ Cα2 lnn. Then since all the peers
s such that 0.s ∈ (0.p′, 0.r) or 0.s ∈ (0.r, 0.t′) should have x(s) ∈ [0.p′, 0.r]
or x(s) ∈ [0.r, 0.t′] respectively, by Lemma 5 we have E(x2) < (1 − (0.r −
0.p′)) + (1 − (0.t′ − 0.r)) = 2 − |I ′| < 2. Thus by Chernoff bound, Pr{x2 ≥
1
2 · Cα2 lnn} ≤ 2−

1

2
·Cα2 ln n = n− 1

2
·Cα2 ln 2. Thus with probability 1 − O(1/n),

we have numx(I ′) = x1 + x2 ≤ 3
2 · Cα2 lnn. Thus by Lemma 6, |I ′| ≤ 3

2 · C(1 +
ǫ)α2 lnn/n. Therefore V ol(p, q) = |I| ≤ 3 · C(1 − ǫ)α1(lnn/n).

Lemma 8. With probability at least 1−2/n, the algorithm ‘Estimate n’ ensures
that (1/6 − ǫ1)n ≤ n̂2 ≤ 6 + ǫ1, for any positive constant ǫ1 and n sufficiently
large.

Proof. Since for a peer p, log(vol(p)−1) is the depth of p’s leaf in the binary
partition tree, by Lemma 4, log(vol(p)−1) is an (α, β) approximation to log n
for any fixed constants α < 1 and β > 2. Thus s = c1 ln vol(p)−1 is an (α, β)
approximation to c1 lnn. Similarly, Lemma 7 shows that t in our algorithm is
a (α/2 − ǫ, 3β + ǫ) approximation to (c1 lnn)/n for any ǫ > 0, for n and c1

sufficiently large. Thus, n̂ is a ( α
3β+ǫ ,

β
α/2−ǫ ) approximation to n for c1 and n

sufficiently large.

3.2 Choosing a Random Peer

By Lemma 8, we can estimate the number of peers as n̂2, a (γ1, γ2)-approximation
to n, for constants γ1, γ2. Then let n′ = n̂2/γ1, and λ = 1/(13n′). Thus n′ ≥ n,
λ ≤ 1/(13n) and λ = Θ(1/n).

Our algorithm for choosing a random peer works as follows. First it randomly
selects a key x in the key space [0, 1]d, looks up the peer p who stores the
key and picks up a random number T in [0, vol(p)]. Then if there is a peer p
such that V ol(lookup(x), p)− (vol(lookup(x))−T ) ≤ λ ·num(lookup(x), p) with
num(lookup(x), p) ≤ 12 ln n′, the algorithm returns the first such peer. Else
it repeats until a peer is returned. We will show that the expected number of



repetitions of the while loop is O(1) with high probability. The algorithm is a
direct generalization of the one given by King and Saia [6].

Choose Random Peer

1. While TRUE do:
2. x ← random number in [0, 1]d;
3. p = lookup(x); T ← random number in [0, vol(p)];
4. For (i = 1; i ≤ 12 ln n′; i + +)
5. If (T ≤ i · λ) return p;
6. Else
7. p = next(p);
8. T = T + vol(p);

Definition 1. For any peer labeled as p, let first(p) be the first peer such
that the sum of the volumes of the peers from first(p) to p including first(p)
and p is larger than or equal to the number of these peers multiplied by λ, i.e.
V ol(first(p), p) ≥ λnum(first(p), p).

Lemma 9. For any peer p, if num(first(p), p) ≤ 12 ln(n′), the algorithm will
choose p with probability λ in each iteration of the while loop.

Proof. Let q = first(p). Note that if peer s = lookup(x) is not in [0.q, 0.p], then
p couldn’t be returned by the algorithm. Otherwise assume 0.s /∈ [0.q, 0.p] and p
is returned. Denote t the previous peer of first(p), i.e. next(t) = first(p). Since
t is visited by algorithm before p, then T1 > λnum(s, t), where T1 is the value
of T at the time t is visited. Then when p is visited, T = T1 +V ol(first(p), p) >
λnum(s, t) + λnum(first(p), p) = λnum(s, p), which contradicts the condition
to return p.

Then we argue by induction on k = num(first(p), p).

Base: k = 1, i.e. vol(p) ≥ λ. The probability that p is selected is vol(p)
1 · λ

vol(p) =

λ.
Induction Step: For k > 1, assume peer p will be chosen if num(first(p), p) <

k. Now consider the case num(first(p), p) = k.
Denote q = first(p). Then for any peer s such that 0.s ∈ [0.q, 0.p), first(s)

should also be in [0.q, 0.p). Otherwise by the definition of first(), V ol(q, s) <
λnum(q, s), V ol(next(s), p) < λnum(next(s), p). Thus V ol(q, p) < λnum(q, p),
which contradicts q = first(p). Therefore all such s have first(s) in [0.q, 0.p) and
by the induction hypothesis they will be selected with probability λ. According
to our algorithm, if the peer s = lookup(x) is in (0.q, 0.p], then one of the peers
in (0.q, 0.p] must be selected since p is a candidate due to first(p) = q. And if
the peer s = lookup(x) is equal to q, then one of the peers in [0.q, 0.p] will be
selected with probability (λnum(q, p) − V ol(next(q), p))/vol(q).

Therefore the probability that one of the peers in [0.q, 0.p] will be selected is
given as

V ol(q, p)

1
·
V ol(next(q), p) + λnum(q,p)−V ol(next(q),p)

vol(q) · vol(q)

V ol(q, p)
= λnum(q, p) (3)



Since every peer s ∈ [0.q, 0.p] other than p has probability λ of being selected
by the induction hypothesis, peer p must be selected with probability λ.

Lemma 10. With probability greater than 1 − 1/n, for any peer p and q such
that num(p, q) > 12 ln n, we have V ol(p, q) > lnn/n.

Proof. Let I = [0.p, 0.p + V ol(p, q)]. Denote t = next(q). Then I = [0.p, 0.t] and
num(p, t) = num(p, q) + 1. Let peer r be the first peer laid down in the network
such that 0.r ∈ [0.p, 0.t]. Let I ′ = [2 · 0.p − 0.r, 2 · 0.t − 0.r]. Then |I ′| = 2|I|.
Note that for any peer s such that 0.s ∈ [0.p, 0.t], s 6= r, its original point
will fall in the interval I ′. Thus numx(I ′) ≥ num(p, q) + 1 − 1 > 12 ln n. By a
simply application of Chernoff bound, we have any interval containing more than
6 ln n points has length greater than lnn/n[6]. Thus |I ′| > 2 ln n/n. Therefore
V ol(p, q) = |I| > lnn/n.

Lemma 11. With probability greater than 1 − 1/n, for any peer p,
num(first(p), p) ≤ 12 ln n′.

Proof. Let q = first(p). By contradiction, assume num(first(p), p) > 12 ln n′.
Let s be the peer such that 0.s ∈ (0.q, 0.p] and num(s, p) = 12 ln n′. Then by
Lemma 10, V ol(s, p) ≥ lnn/n ≥ lnn′/n′ ≥ 12 ln n′/(13n′) = λ ·num(s, p). Then
first(p) must be in [0.s, 0.p], which contradicts q = first(p) and 0.s ∈ (0.q, 0.p].
Therefore num(first(p), p) ≤ 12 ln n′.

Theorem 2. With probability at least 1 − 3/n, each peer is chosen with proba-
bility exactly 1/n.

Proof. By Lemma 11, for any peer p, num(first(p), p) ≤ 12 ln n′. Then by
Lemma 9, our algorithm will choose p with probability λ in each iteration of
the while loop. Since λ = Θ(1/n), the expected number of the repetitions of
the while loop will be Θ(1). Therefore each peer will be chosen with the same
probability.

3.3 Latency and Message Complexity

Proof of Theorem 1: By Theorem 2, our algorithm selects each peer with
probability 1/n, with high probability. Now consider its latency and message
complexity.

Since our algorithm for estimating n takes O(log n) next operations in ex-
pectation, it has expected latency O(log n) and message complexity O(log n).

For each iteration of the while loop of the algorithm, there is one lookup
operation and at most O(log n) next operations. By Lemma 4 and 3, the lookup
operations in CAN implemented with the aid of the partition tree have expected
complexity O(log n), with O(1) routing items being maintained at each peer.

Therefore, in CAN, our algorithm has expected latency O(log n) and sends
O(log n) messages in expectation.



4 Future work: biased distributions and more general

networks

In this section, we propose two natural generalizations of the uniform random
sampling problem which pose interesting lines of future work.

First we consider the problem of handling more general sampling distribu-
tions and to choose peers with a biased probability. In other words, we would
like to choose a peer p with probability proportional to f(p), thereby with prob-
ability f(p)/

∑
f(x), where f(p) can be any positive function on peer p. A case

that is easy to solve is when max(f(x))/min(f(x)) = Θ(1). We can estimate∑
f(x) as σ to a constant factor with a technique similar to that we used for

estimating n. We assign each peer a region of volume λ(p) = c · f(p)/σ, where c
is a constant. Since max(f(x))/min(f(x)) = Θ(1) and σ approximates

∑
f(x)

within a constant factor, we have λ(p) = Θ(1/n) for all peers p. Then the sam-
pling algorithm still works if Line 5 is replaced by ’If (T ≤ Λi) return p;’, where

Λi =
∑i−1

k=0 λ(next(k)(p)). For brevity, we omit the proof of correctness. Dealing
with distributions that are not “almost uniform” as described above seems to
be rather more difficult.

The second generalization of the random sampling problem that we consider
is to devise efficient algorithms for selecting a peer uniformly at random in other
overlay peer-to-peer systems, such as the locality-aware systems of Plaxton et
al. [8] and Abraham et al. [1], or in systems that provide even less structure than
Chord or CAN. Our approach of using a space-filling curve can be used in most
systems based on peers embedded in geometric space.
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