
Randomized Postoptimization of Covering
Arrays

Peyman Nayeri, Charles J. Colbourn, and Goran Konjevod

Computer Science and Engineering, Arizona State University,
P.O. Box 878809, Tempe, AZ 85287, U.S.A.

{peyman.nayeri,charles.colbourn,goran}@asu.edu

Abstract. The construction of covering arrays with the fewest rows
remains a challenging problem. Most computational and recursive con-
structions result in extensive repetition of coverage. While some is nec-
essary, some is not. By reducing the repeated coverage, metaheuristic
search techniques typically outperform simpler computational methods,
but they have been applied in a limited set of cases. Time constraints of-
ten prevent them from finding an array of competitive size. We examine
a different approach. Having used a simple computation or construction
to find a covering array, we employ a postoptimization technique that
repeatedly adjusts the array in order to (sometimes) reduce its number
of rows. At every stage the array retains full coverage. We demonstrate
its value on a collection of previously best known arrays by eliminating,
in some cases, 10% of their rows. In the well-studied case of strength two
with twenty factors having ten values each, postoptimization produces a
covering array with only 162 rows, improving on a wide variety of com-
putational and combinatorial methods. We identify certain important
features of covering arrays for which postoptimization is successful.

1 Introduction

Covering arrays are combinatorial models of test suites used to detect faulty
interactions among components in software, hardware, and networked systems.
They are intimately related to orthogonal arrays and related experimental de-
signs; to surjective codes; and to qualitatively independent partitions. As a con-
sequence of these and other connections, the construction of covering arrays has
been a topic of substantial interest. See [1,2] for surveys that are now somewhat
dated. Despite the extensive effort expended, finding the smallest test suites for
given testing scenarios remains an unsolved problem in general. We first intro-
duce a purely combinatorial formulation.

Let N , k, t, and v be positive integers. An N×k array, each column of which
contains v distinct symbols, is a covering array CA(N ; t, k, v) of strength t when,
for every way to select t columns, each of the vt possible tuples of symbols arises
in at least one row. When used for testing, columns of the array form factors,
and the symbols in the column form values or levels for the factor. Each row
specifies the values to which to set the factors for an experimental run. A t-tuple



or t-way interaction is a set of t of the factors, and an admissible level for each.
The array is ‘covering’ in the sense that every t-way interaction is represented by
at least one run. Now CAN(1, k, v) = v and CAN(t, k, 1) = 1. So to avoid trivial
cases, we suppose that k ≥ t ≥ 2 and v ≥ 2. In this paper, we always take the
value set of each factor to be {0, . . . , v − 1}.

11120211122100120202122221
00011021212221100112101122
10212221220201211010200011
01222111111121002001020002
12110110210000022022221111
21020120021102212111201120
02001022202101202000222210
10102200011011222201102102
1?000212111220221102011000
01002002020010001110121211
20220202100101101120012102
22202101002012110022110020
12121010202212001211002001
20111112010222011200022220
02121220121022020110010112
0?010022120??0210221200202
2121100020122012222?211211
?0?10?2?1??1101????121??1?

At left is shown a CA(18;2,26,3). The entries
shown as ? can be chosen arbitrarily, and ev-
ery pair of columns contains each of the nine
possible pairs.
In testing applications, the fundamental prob-
lem is to determine CAN(t, k, v). Evidently,
CAN(t, k, v) ≥ vt, and when equality holds
the CA is an orthogonal array OA(vt; t, k, v);
see [3] for a textbook treatment. Such orthog-
onal arrays can exist only when k ≤ max(v +
2, t + 1) [3], and hence they provide no ex-
amples beyond ‘small’ values of k. For fixed
v and t, probabilistic methods establish that
CAN(v, k, t) = Θ(log k) [4]. Nevertheless, only
in the case when t = v = 2 is this function of k
known exactly [5,6]. When CAN(t, k, v) is not
known exactly, most effort has been invested
in producing ‘good’ upper bounds. This is the
problem considered here.

Explicit constructions of covering arrays are needed in concrete testing appli-
cations. Recursive methods build larger covering arrays from smaller ones. Some
recursive methods are product constructions; see, for example, [7] for t = 2, [8,9]
for t = 3, [9] for t = 4, and [10,11] for t ≥ 5. Although these all rely on a similar
strategy, their use of numerous smaller covering arrays can result in substantial
duplication of coverage; the specific variants result from efforts to reduce this
duplication, and have been most successful to date when t ∈ {2, 3}. A second
class of recursive methods are column replacement constructions, which use a
second array as a pattern for selecting columns from a covering array; see [12] for
the most general one at present. Again these suffer from substantial repetition of
coverage. Every recursive method also requires that ingredient covering arrays
be known.

Direct methods construct covering arrays without recourse to smaller ingre-
dient covering arrays. Some methods employ geometric, algebraic, or number-
theoretic properties. The orthogonal arrays constructed from the finite fields [3]
provide a prototype for these. By exploiting the structure of automorphisms of
the OAs, compact representations of covering arrays accelerate computational
search [13–16]. Recently, cyclotomic classes in the finite field have been shown
to provide examples of binary covering arrays, and more generally examples are
provided by certain Hadamard matrices [17]. Block designs have been used to
make a few specific covering arrays [18]. Other easily constructed examples are
provided by taking all vectors of specified weights to form the rows of a covering



array [19–21]. Each of these constructions provides useful examples of covering
arrays, but each is quite restricted in its application. Therefore by far the most
popular general methods are computational techniques.

Exhaustive computation has proved ineffective except in a handful of small
cases. Therefore heuristic and metaheuristic strategies have been the norm. Tech-
niques such as simulated annealing [22], tabu search [23], and constraint satis-
faction [24] are very effective for small existence problems, but the time taken
for convergence to a solution has limited their range of application. As a conse-
quence, the most prevalent computational methods have been greedy. AETG [25]
popularized greedy methods that generate one row of a covering array at a time,
attempting to select a best possible next row; since that time, TCG [26] and
density algorithms [27, 28] have developed useful variants of this approach. For
strength two, IPO [29] instead adds a factor (column) at a time, adding rows as
needed to ensure coverage; the generalization to t-way coverage in [30,31] is the
method that has been run on the largest set of parameters to date. When the
arrays to be produced are very large, just checking the properties of the array is
challenging; therefore, random methods have also been examined [32].

Unfortunately, at the present time, based on the current best known upper
bounds for CAN(t, k, v) for 2 ≤ t ≤ 6, 2 ≤ v ≤ 25, and t ≤ k ≤ 10000 at [33],
no single construction can be applied generally while yielding the best, or close
to the best, known results. This leaves the tester with the problem of how to
generate a covering array quickly that is not ‘far’ from optimum. We examine a
new approach, that of improving a covering array after it is constructed; we call
this process postoptimization. To the best of our knowledge, the only previous
effort to improve an existing covering array is the elimination of redundant rows
in CATS [34].

2 Postoptimization

In any covering array CA(N ; t, k, v), the number of t-way interactions to be cov-
ered is

(
k
t

)
vt, while the number actually covered is N

(
k
t

)
. Except possibly when

k ≤ max(v+2, t+1), some duplication of coverage is necessary. All of the recur-
sive and direct techniques attempt to limit this duplication, but cannot hope to
eliminate it completely. Our objective is to eliminate some of the duplication, if
possible. Every entry of a CAN(t, k, v) participates in

(
k−1
t−1

)
t-way interactions.

Some of these interactions may be covered elsewhere, while others may be cov-
ered only in this row. In principle, a specific t-way interaction could be covered
as many as N − vt + 1 times or as little as once. When all of the

(
k−1
t−1

)
t-way

interactions involving a specific entry are covered more than once, the entry can
be changed arbitrarily, or indeed omitted in the determination of coverage, and
the array remains a covering array. Hence such an entry is a possible don’t care
position. If we replace such an entry by ? to indicate that t-way interactions
involving this entry are not to be used for coverage, we select it as a don’t care
position. This replacement can cause other possible don’t care positions to ap-
pear in t-way interactions that are now covered only once – such positions are



no longer possible don’t care positions. On the other hand, replacing a ? by an
element from {0, . . . , v−1} can result in new positions for which all of their t-way
interactions are covered more than once, i.e. new possible don’t care positions.

Our strategy is to exploit the presence of don’t care positions in covering
arrays. By choosing a specific set of such positions to change to ?, and then
replacing these by elements again, we form a new covering array with a possibly
different collection of possible don’t care positions. By itself this is of no use other
than to produce many covering arrays with the same parameters. However, in
some cases we can form an entire row containing only don’t care positions. When
this occurs, the row is not needed and can be deleted. This is the sense in which
the covering array is improved, by the deletion of rows.

2.1 Finding Don’t Care Positions

To find possible don’t care positions, it suffices to determine the numbers of times
that the

(
k
t

)
vt t-way interactions are covered. For each of the Nk entries, check

whether the entry appears in any t-way interaction that is covered only once. If
not, it is a possible don’t care position. While conceptually simple, this requires
space proportional to

(
k
t

)
vt, which is too much in practice. Instead initially mark

each of the Nk entries as a possible don’t care. Then for each of the
(
k
t

)
sets of

columns in turn, use a vector of length vt to record the number of times each of
the t-way interactions arises in the t chosen columns. Then for each that arises
only once, mark all t positions in it to be no longer don’t care. This requires only
Nk + vt space, but still requires time proportional to tN

(
k
t

)
. At the same time,

one can verify that the array is in fact a covering array, by ensuring that every
t-way interaction is seen at least once. Unfortunately, if we change any one of
the possible don’t care positions to ?, some recomputation is then needed.

To find a set of don’t care positions that can all be simultaneously changed
to ?, we use the fact that rows are recorded in a specific order. For every set of
t columns we consider the rows of the CA in order; when a t-tuple is covered for
the first time we mark its t positions as necessary. After every possible set of t
factors is treated, all positions that are not necessary can be changed to ?. This
can be done in the same time and space as the identification of all possible don’t
care positions.

Once done, each row may have any number of ? entries from 0 to k − t or
may consist entirely of don’t care positions. When the latter occurs, this row
can be removed without reducing the strength of the CA.

2.2 Choosing a Row to Eliminate

In some cases, simply identifying don’t care positions enables us to remove a
row, but this is atypical unless the CA is very far from optimal. Therefore we
attempt to produce more don’t care positions in one row by using don’t care
positions in others, with the objective of generating an entire row of don’t care
positions. Thus we wish to select a row that can be ‘easily’ removed. A natural



selection is a row that has the most don’t care positions already. Perhaps a more
appropriate selection would be the row in which the number of multiply covered
t-tuples is largest. When ? entries are present, however, replacing the ? by a
value results in a substantial change in this statistic. For this reason, one should
calculate, for a row with ` ? entries, the quantity

∑`
i=1

(
`
i

)(
k−`
t−i

)
plus the number

of multiply covered t-tuples, and select a row that maximizes this quantity. This
would require substantially more computation, so a simple count of don’t care
positions is used here.

2.3 Algorithm

Having nominated a row for possible elimination, we move the nominated row
to be the last row of the CA. We now use don’t care positions in other rows in an
attempt to introduce (eventually) further don’t care positions in the nominated
row. A simple strategy is to consider each entry of the nominated row that is
not ?, locate all ? positions in the same column, and replace each by the entry
in the nominated row. This can result in t-way interactions that were covered
only in the last row also being covered earlier, and can therefore result in new
don’t care positions in the last row. In our experiments we found this simple
strategy to be too restrictive; while it can produce new don’t care positions in
the last row, it often fails to produce much change in the pattern of don’t care
positions in the rest of the array. We therefore adopt a less restrictive approach.
For each ? position, if the nominated row does not contain ? in that column,
we replace the ? with the value from the nominated row; otherwise we select a
value at random to replace the ?.

One iteration typically produces a different covering array from the one given
as input. However, if we simply find don’t care positions again, often the set is
very similar to the one just used, and consequently the method stalls quickly.
Instead we randomly reorder all rows except the last. Then finding don’t care
positions typically yields a different set – but in the last row, all positions that
were don’t care positions remain so. Of course, another row that previously had
fewer don’t care positions than the nominated row may now have more; if it
does, it becomes the nominated row and is moved to the bottom.

Arguably, one should be more clever in filling the don’t care positions, and
in reordering the rows. Perhaps this is so, but in our experience the randomness
of these two choices is crucial. Whatever choices are made, it can happen that
the same row is nominated at each step, but no row reordering of the remaining
rows yields a set of ? positions that result in an improvement of the nominated
row (i.e., more ? positions).

2.4 Escaping Local Optima

The decision that the CA is unlikely to be improved from its current state can be
done by monitoring the total number of don’t care positions in the array, or the
number in the nominated row, and abandoning the nominated row when it is ‘too
long’ since the number has improved. We use the number in the nominated row,



and set a threshold on the number of iterations permitted without improvement.
When we exceed the threshold, we take this as evidence that the search has
converged to a local optimum. We employ a simple method of escaping. We
move the nominated row along with any other row that contains a don’t care
position to the top of the CA, fill all the ? positions with random values and
start with this revised array. This could result in a major change in the state of
the CA, and indeed the next row nominated may have substantially fewer don’t
care positions than the one just abandoned.

2.5 Implementation and Scalability

The escape from local optima permits us to start from one CA and produce
a very different one. Therefore multiple processes can execute simultaneously,
all working from a single start point and exploring different areas of the search
space. Once an improvement has been made by one of the tasks the result can be
shared with the others as the new starting point. An effective way to check for
improvements among all processes uses an ‘Allgather’ operation, in which every
process shares its current number of rows with the others. If there is a difference
between the minimum and maximum of the values then the best result is broad-
cast from the lowest ranking process with the best result. A reasonable amount
of time, at least sufficient for one iteration to complete, must be dedicated to
searching for an improvement before communicating with other processes. We
have implemented the method both in a sequential setting and in a parallel one
as outlined.

3 Results

Perhaps the biggest surprise is that the algorithm works at all. Previously the
best result for CAN(6,8,5) is the upper bound 32822 from IPOG-F [31]. Starting
with this array, our method eliminates 4034 rows to show that CAN(6,8,5)≤
28788 in one minute of computation; in ten minutes it reduces to 27909 rows; in
one hour to 27772; and in five hours to 27717. While five hours may be longer
than one wishes to spend, one minute to remove 12.3% of the rows appears
well worth the effort! (All times reported here are for an 8-core Intel Xeon
processor clocked at 2.66GHz with 4MB of cache, bus speed 1.33GHz, and 16GB
of memory. Only one core is used when timing is reported. The program is coded
in C++.)

A striking example is the well studied case CA(N ; 2, 20, 10). In the announce-
ment of AETG [25], CAN(2, 20, 10) ≤ 180 is stated, but no explicit description is
given. Yet the commercial implementation of AETG reports 198 rows. A recent
paper by Calvagna and Gargantini [35] reports bounds on CAN(2,20,10) from
ten methods; other than the bound of 180 reported by AETG [25], the remain-
ing methods give bounds of 193, 197, 201, 210, 210, 212, 220, 231, and 267.
Metaheuristic search using simulated annealing [22] yields 183 rows. Two com-
binatorial constructions both using a 1-rotational automorphism [13, 14] yield



181 rows. Finally it was shown that CAN(2, 20, 10) ≤ 174 using a double pro-
jection technique [13]. In Table 1 we apply postoptimization to seven covering
arrays; we give the method used to produce a CA(Nold; 2, 20, 10), the number
Nnew of rows after postoptimization, and the numbers of possible don’t care
and don’t care positions. The best establishes that CAN(2, 20, 10) ≤ 162; five
of the seven improve, but those from simulated annealing and the 1-rotational
solution see no improvement. The improvement on CAN(2,20,10) is remarkable,
given the variety of methods that have been previously applied to try to improve
this bound.

Method Nold Nnew Poss. ? ?
TCG 217 198 444 256
IPO 212 196 449 285
density 203 195 170 79
AETG 198 190 195 132
annealing 183 183 13 3
1-rotational 181 181 0 0
double projection 178 162 415 146

Table 1. Postoptimization on CA(N ; 2, 20, 10)s

We therefore consider projection further. In [13], a construction of Stevens,
Ling, and Mendelsohn [36] is generalized to a projection technique that produces
a CA(q2 − x; 2, q + 1 + x, q − x) from an OA(q2; 2, q + 1, q) when q is a prime
power and x ≥ 0. It is so named because x symbols of the OA are ‘projected’ to
form x new columns. (See [13] for details.) There it is observed that x symbols
can be projected to form 2x new columns (a ‘double projection’), but the result
is no longer a covering array. Rather it is a partial covering array that leaves
many pairs uncovered, but also contains many don’t care positions. A general
pattern to complete this partial array while adding few rows is elusive, if indeed
one exists at all. We therefore employ this partial covering array as a ‘seed’
and complete it using the density algorithm [27]. We found that treating all
uncovered pairs equally, as density does, results in the addition of many rows (for
example, for the partial CA(166; 2, 20, 10), as many as 50 new rows). Therefore
we modified the greedy selection in density to weight uncovered pairs on columns
{q+ 1, . . . , q+ 2x} highest, pairs with one column from {q+ 1, . . . , q+ 2x} next,
and pairs with neither column from {q+1, . . . , q+2x} least; then density selects
the largest total weight of uncovered pairs. This remains a greedy heuristic;
nevertheless, it adds as few as 12 rows to complete the partial CA(166; 2, 20, 10).

Using projection and double projection on the OA(q2; 2, q + 1, q) for q ∈
{13, 16, 17, 19} and completing with the weighted density method, we formed
numerous covering arrays and applied postoptimization to each. When x > 1,
each saw a reduction in the number of rows, sometimes dramatic. In Table 2 we
report the new bounds obtained. The value in parentheses is the number of rows
of the CA prior to postoptimization.



t v k CAN(t, k, v) ≤ Old Bound t v k CAN(t, k, v) ≤ Old Bound

2 10 17 152 (166) 154 [14] 2 10 18 155 (178) 163 [14]
2 10 19 159 (178) 172 [14] 2 10 20 162 (178) 174 [13]
2 10 21 171 (189) 190 [14] 2 10 22 184 (195) 191 [7]
2 11 18 180 (193) 181 [14] 2 12 16 192 (219) 199 [14]
2 13 20 246 (253) 253 [14] 2 14 19 253 (254) 254 [13]
2 14 21 279 (286) 286 [13] 2 14 24 310 (387) 313 [14]
2 15 24 343 (357) 357 [13] 2 16 23 353 (358) 358 [13]

Table 2. Covering Arrays from Double Projection

One expects that the rows added by density are less effective in the coverage
of pairs than the rows of the OA to which double projection are applied. Sur-
prisingly, postoptimization can succeed in eliminating so many rows that at the
end fewer than q2 − x remain!

Now we consider arrays from the density method [28,37]. We treat a few spe-
cific values of t and v. In Table 3, each input array CA(N ; 4, k, 3), CA(N ; 5, k, 2),
and CA(N ; 6, k, 2) is from density [28, 37], and postoptimization is run for 10
minutes (on a single core). The wall clock time limit results in many more it-
erations being completed when k is small; we expect that this is the primary
reason for the larger improvements for few factors. Two of the ‘old’ bounds
(CAN(5, 12, 2) ≤ 92 and CAN(5, 14, 2) ≤ 110) are from [16]. For t = 6, the ‘old’
bounds are from [20] when k = 9, a greedy method of Kuliamin [38] when k = 10,
PaintBall [32] when k ∈ {11, 12, 16}, and density [28, 37] otherwise. All of the
new bounds are obtained by postoptimization of CAs from density.

CA(N ; 4, k, 3)
k New Old k New Old k New Old k New Old k New Old

11 211 230 17 300 312 24 377 389 31 440 446 32 445 454
33 454 461 34 462 468 40 499 504 41 506 510 42 509 513
43 518 522 44 522 526 45 526 530 46 530 534 47 534 538
48 542 546 52 560 562 53 565 567 54 568 572 55 572 575
56 578 581 57 581 584 58 585 588 59 589 592 61 598 601
63 604 607 64 612 614 66 618 620 70 627 629

CA(N ; 5, k, 2)
11 82 86 12 89 92 13 95 103 14 103 110 15 110 115
16 117 123 18 127 135

CA(N ; 6, k, 2)
9 118 120 10 144 150 11 167 178 12 184 190 16 258 270
18 294 309 19 309 323 20 327 337 21 341 352 22 355 362
23 371 377 33 496 503 34 502 508 35 510 516 36 525 529
37 534 541

Table 3. Covering Arrays from Density

It appears that postoptimization is applicable to covering arrays from a num-
ber of sources, but there are cases where it has no effect. Indeed we applied
postoptimization to all of the arrays found by Nurmela [23] using tabu search,



and none improved. We applied postoptimization to numerous arrays found by
Cohen [22] using simulated annealing, and none improved.

We report one more successful application next. Colbourn and Kéri [17]
recently employed Hadamard matrices to establish that CAN(4, 20, 2) ≤ 40,
CAN(4, 32, 2) ≤ 64, and CAN(4, 36, 2) ≤ 72; previously the best known bounds
were CAN(4, 20, 2) ≤ 55 [9], CAN(4, 32, 2) ≤ 73 [38], and CAN(4, 36, 2) ≤ 95 [9].
Applying postoptimization to the Hadamard matrix solutions improve these to
establish that CAN(4, 20, 2) ≤ 39, CAN(4, 32, 2) ≤ 59, and CAN(4, 36, 2) ≤ 66.

4 Using Postoptimization in Practice

Arguably the success of postoptimization is evidence of our limited understand-
ing of covering arrays. Indeed the restrictions on applicability of combinato-
rial constructions have forced us to consider computational search for ‘small’
covering arrays both to provide best known small arrays, and to serve as in-
gredient arrays in recursions. However our ability to carry out computations
is limited. To illustrate this, consider strength t = 4 using [33]. Among the
best known arrays, only the bounds CAN(4, 13, 2) ≤ 34 [39], CAN(4, 6, 3) ≤ 111
[39], CAN(4, 7, 3) ≤ 126 [39], CAN(4, 8, 3) ≤ 153 [22], CAN(4, 6, 4) ≤ 375 [22],
CAN(4, 7, 6) ≤ 1893 [39], and CAN(4, 8, 6) ≤ 2068 [39] are produced by simu-
lated annealing. None have been produced by tabu search, constraint satisfac-
tion, or other metaheuristic search techniques. The workhorses of computation
are the greedy methods; both density [28] and IPO [30,31] yield numerous best
known covering arrays of strength four. IPO, for example, yields the best known
CA(207; 4, 599, 2), CA(1050; 4, 445, 3), CA(3170; 4, 308, 4), CA(7145;4,208,5), and
CA(13983;4,163,6), along with many arrays with fewer columns. Some direct
constructions that limit or eliminate the computation provide sporadic results,
but the rest of our knowledge rests on recursions.

What explains the prevalence of greedy computations among the best known
results? It is very unlikely that simulated annealing or tabu search would not
yield better results, if either could be run for an adequate period of time. That
is precisely the problem, however. Neither has been implemented so as to find
competitive solutions starting from scratch within a time frame that anyone is
willing to invest. Yet neither is configured so as to take an existing covering array
and improve it by removing rows. Indeed both have been devised to improve a
partial covering array to make it cover more and more t-way interactions within
a specified number of rows. Hence if the time allocated is insufficient, these
metaheuristic search methods end with an array that is still not a covering
array. The fundamental difference in postoptimization is that at every stage we
are dealing with a covering array, not a partial one. This focuses the search much
more than is typically done with simulated annealing or tabu search.

This suggests the main merit of using postoptimization. In using a greedy
approach, or a recursion that may have poor ingredients, we do not expect to
produce a covering array whose size is close to the minimum. But we can produce
such an array quickly for a wide range of parameters. And having produced it,



we can invest time in postoptimizing the array, stopping at any time with the
assurance that a covering array is produced. This appears to be a practical
solution to the problem of balancing the time to produce a test suite (covering
array) and the time to execute the tests. Within a total time budget for testing,
it suggests the feasibility of investing less time in the initial construction of
the tests while exploiting the (relatively) fast operation of postoptimization to
reduce the time for test execution.

Postoptimization also plays a role in producing the smallest arrays known, as
we have seen. Naturally it would be of interest to be able to predict the extent
to which postoptimization will be successful. This could help us decide when
to try postoptimization. Perhaps more importantly, it would suggest criteria to
construct covering arrays that are amenable to postoptimization. Consider Ta-
ble 1 for the widely studied case CA(N ; 2, 20, 10). Obviously the repetition of
coverage in the larger arrays is greater in total, yet the size of the input array
does not serve as a good predictor of the improvement seen. In these results,
the number of possible don’t care positions appears to be the key. Certainly the
presence of possible don’t care positions is necessary for improvement. However,
we believe that the distributions of possible don’t care positions among the rows
and columns of the array also affect the extent of improvement. Moreover, the
patterns of positions that can be realized simultaneously as don’t care positions
may be more relevant than the pattern of possible don’t care positions. Neverthe-
less, using the number of possible don’t care positions as a preliminary indicator
of the potential improvement appears worthwhile.

5 Conclusion

It comes as no surprise that many of the covering arrays that are best known at
present are far from optimal. In these cases, postoptimization provides a rela-
tively fast method for detecting and exploiting duplication of coverage in order
to improve the arrays. More surprising are the cases in which postoptimization
improves on a result that is already better than those obtained from heuristic
search, as we saw with double projection and with arrays from Hadamard ma-
trices. In these cases, the reason for success does not appear to the poor quality
of the initial array. While duplication of coverage is necessary in all arrays with
N > vt, the distributions of numbers of times that a t-way interaction is covered
can vary widely from interaction to interaction. This can result in certain cells or
rows being more effective in coverage than are others. By focusing on arrays in
which the contributions of cells or rows are quite unbalanced, postoptimization
is sometimes able to eliminate the need for a cell, and perhaps an entire row.

The main benefits of postoptimization are that it does not depend on a par-
ticular construction technique; iterations can be executed in approximately the
same time as needed to check that the array is in fact a covering array; and
that it can be executed for as many iterations as desired, with the assurance
that whenever it is stopped, the array is a covering array. At present the main
limitations are that it does not appear to be effective for certain covering arrays



such as those produced by metaheuristic search; and that the extent of improve-
ment that one can expect cannot be reliably predicted. Despite these limitations,
postoptimization has already proved to be an easy and effective means to im-
prove a wide variety of covering arrays.

Acknowledgements

Research of the second author is supported by DOD grant N00014-08-1-1070.

References

1. Colbourn, C.J.: Combinatorial aspects of covering arrays. Le Matematiche (Cata-
nia) 58 (2004) 121–167

2. Hartman, A.: Software and hardware testing using combinatorial covering suites.
In Golumbic, M.C., Hartman, I.B.A., eds.: Interdisciplinary Applications of Graph
Theory, Combinatorics, and Algorithms. Springer, Norwell, MA (2005) 237–266

3. Hedayat, A.S., Sloane, N.J.A., Stufken, J.: Orthogonal Arrays. Springer-Verlag,
New York (1999)

4. Godbole, A.P., Skipper, D.E., Sunley, R.A.: t-covering arrays: upper bounds and
Poisson approximations. Combinatorics, Probability and Computing 5 (1996) 105–
118

5. Katona, G.: Two applications (for search theory and truth functions) of Sperner
type theorems. Periodica Math. 3 (1973) 19–26

6. Kleitman, D., Spencer, J.: Families of k-independent sets. Discrete Math. 6 (1973)
255–262

7. Colbourn, C.J., Martirosyan, S.S., Mullen, G.L., Shasha, D.E., Sherwood, G.B.,
Yucas, J.L.: Products of mixed covering arrays of strength two. Journal of Com-
binatorial Designs 14(2) (2006) 124–138

8. Cohen, M.B., Colbourn, C.J., Ling, A.C.H.: Constructing strength three covering
arrays with augmented annealing. Discrete Math. 308 (2008) 2709–2722

9. Colbourn, C.J., Martirosyan, S.S., Tran van Trung, Walker II, R.A.: Roux-type
constructions for covering arrays of strengths three and four. Designs, Codes and
Cryptography 41 (2006) 33–57

10. Martirosyan, S.S., Colbourn, C.J.: Recursive constructions for covering arrays.
Bayreuther Math. Schriften 74 (2005) 266–275

11. Martirosyan, S.S., Tran van Trung: On t-covering arrays. Des. Codes Cryptogr.
32 (2004) 323–339

12. Colbourn, C.J.: Distributing hash families and covering arrays. J. Combin. Inf.
Syst. Sci. (to appear)

13. Colbourn, C.J.: Strength two covering arrays: Existence tables and projection.
Discrete Math. 308 (2008) 772–786

14. Meagher, K., Stevens, B.: Group construction of covering arrays. J. Combin. Des.
13(1) (2005) 70–77

15. Sherwood, G.B., Martirosyan, S.S., Colbourn, C.J.: Covering arrays of higher
strength from permutation vectors. J. Combin. Des. 14(3) (2006) 202–213

16. Walker II, R.A., Colbourn, C.J.: Tabu search for covering arrays using permutation
vectors. J. Stat. Plann. Infer. 139 (2009) 69–80



17. Colbourn, C.J., Kéri, G.: Covering arrays and existentially closed graphs. Lecture
Notes in Computer Science 5557 (2009) 22–33

18. Chateauneuf, M.A., Kreher, D.L.: On the state of strength-three covering arrays.
J. Combin. Des. 10(4) (2002) 217–238

19. Johnson, K.A., Entringer, R.: Largest induced subgraphs of the n-cube that contain
no 4-cycles. J. Combin. Theory Ser. B 46(3) (1989) 346–355

20. Johnson, K.A., Grassl, R., McCanna, J., Székely, L.A.: Pascalian rectangles modulo
m. Quaestiones Math. 14(4) (1991) 383–400

21. Tang, D.T., Chen, C.L.: Iterative exhaustive pattern generation for logic testing.
IBM Journal Research and Development 28(2) (1984) 212–219

22. Cohen, M.B.: Designing test suites for software interaction testing. PhD thesis,
The University of Auckland, Department of Computer Science (2004)

23. Nurmela, K.: Upper bounds for covering arrays by tabu search. Discrete Applied
Mathematics 138(9) (2004) 143–152

24. Hnich, B., Prestwich, S., Selensky, E., Smith, B.M.: Constraint models for the
covering test problem. Constraints 11 (2006) 199–219

25. Cohen, D.M., Dalal, S.R., Fredman, M.L., Patton, G.C.: The AETG system: an
approach to testing based on combinatorial design. IEEE Transactions on Software
Engineering 23(7) (1997) 437–44

26. Tung, Y.W., Aldiwan, W.S.: Automating test case generation for the new gen-
eration mission software system. In: Proc. 30th IEEE Aerospace Conference, Los
Alamitos, CA, IEEE (2000) 431–437

27. Bryce, R.C., Colbourn, C.J.: The density algorithm for pairwise interaction testing.
Software Testing, Verification, and Reliability 17 (2007) 159–182

28. Bryce, R.C., Colbourn, C.J.: A density-based greedy algorithm for higher strength
covering arrays. Software Testing, Verification, and Reliability 19 (2009) 37–53

29. Tai, K.C., Yu, L.: A test generation strategy for pairwise testing. IEEE Transac-
tions on Software Engineering 28(1) (2002) 109–111

30. Lei, Y., Kacker, R., Kuhn, D.R., Okun, V., Lawrence, J.: IPOG: A general strategy
for t-way software testing. In: Fourteenth Int. Conf. Engineering Computer-Based
Systems. (2007) 549–556

31. Forbes, M., Lawrence, J., Lei, Y., Kacker, R.N., Kuhn, D.R.: Refining the in-
parameter-order strategy for constructing covering arrays. J. Res. Nat. Inst. Stand.
Tech. 113(5) (2008) 287–297

32. Kuhn, D.R., Lei, Y., Kacker, R., Okun, V., Lawrence, J.: Paintball: A fast algo-
rithm for covering arrays of high strength. Internal Tech. Report, NISTIR 7308
(2007)

33. Colbourn, C.J.: Covering array tables http://www.public.asu.edu/∼ccolbou/src/tabby,
2005–present.

34. Sherwood, G.: Effective testing of factor combinations. In: Proc. 3rd Int’l Conf.
Software Testing, Analysis and Review, Software Quality Eng. (1994)

35. Calvagna, A., Gargantini, A.: IPO-s: incremental generation of combinatorial inter-
action test data based on symmetries of covering arrays. In: Proc. Fifth Workshop
on Advances in Model Based Testing. (2009) to appear

36. Stevens, B., Ling, A., Mendelsohn, E.: A direct construction of transversal covers
using group divisible designs. Ars Combin. 63 (2002) 145–159

37. Linnemann, D., Frewer, M.: Computations with the density algorithm (private
communication by e-mail) (October 2008)

38. Kuliamin, V.V.: private communication by e-mail (February 2007)
39. Soriano, P.P.: private communication by e-mail (March 2008)


