
Dynamic Routing in Metrics of Low Doubling Dimension

Goran Konjevod Andréa W. Richa Donglin Xia

November 19, 2007

Abstract

We consider dynamic compact routing in metrics of low doubling dimension. Given a set of nodes V in a
metric space with nodes joining, leaving and moving, we show how to maintain a set of links E that allows
compact routing on the graph G(V, E) in both labeled and name-independent models.

Given a constant ǫ ∈ (0, 1) and a dynamic node set V with normalized diameter ∆ in a metric of doubling
dimension α, we achieve

• a dynamic graph G(V, E) with maximum degree (1/ǫ)O(α) log ∆, and an optimal (1+ǫ)-stretch compact
labeled routing scheme on G with O(log2 ∆)-bit label size and O(log2 ∆)-bit storage at each node; and

• a dynamic graph G(V, E) with maximum degree 2O(α) log2 ∆, and an optimal (9 + ǫ)-stretch compact
name-independent routing scheme on G with (1/ǫ)O(α) log3 ∆-bit storage at each node.

(Note that the lower bound of 9 on the stretch of compact name-independent routing schemes in our PODC’06
paper can be extended to routing on a metric.) Moreover, the amortized number of messages for a node
joining, leaving and moving is polylogarithmic in the diameter ∆. Finally, the cost of a node movement
operation is locality-sensitive. A k-level node-move protocol at a node u is performed only if u has moved
to a point within distance at least 2k from the point where u was where the last node-move protocol at
level no less than k was executed at u. The amortized number of messages in a k-level node-move protocol
is proportional to k2 and k for the name-independent and labeled schemes, respectively, and each message
traverses a path of distance O(2k/ǫ).

Our dynamic routing schemes rely on a new dynamic search tree structure that is less sensitive to changes
in the network topology than search trees resulting from standard network decomposition techniques (such
as search trees that directly mimic a hierarchical r-net decomposition of the network), and thus supports a
locality-sensitive load-balancing procedure.

I

1 Introduction
A metric space (M,d) consists of a set of points M and a distance function d : M ×M → R+. Given a set
of nodes V , where a node is a processor with memory and corresponds to a distinct point in M , the routing
algorithm designer is allowed to assign a set of links E ⊆ V ×V so that the two end nodes of any link (u, v) ∈ E
can communicate with each other with delay d(u, v)1. A routing scheme on the graph G(V,E) is a distributed
algorithm running at each node that allows any source node to deliver packets to any destination node along
the links in E. There are two models for routing schemes: labeled routing, and name-independent routing. The
former allows the designer of the routing scheme to label the nodes so that they contain additional routing (e.g.
topological) information. In the latter case, the routing scheme must use the (arbitrary) original naming.

For routing on a metric, we consider the trade-off among stretch, space and the number of links at each
node. The stretch of a routing scheme is the maximum ratio of the length of a routing path between u and v to
the distance d(u, v), over all pairs of nodes u, v. The space requirement of a scheme refers to the size of routing
tables maintained at each node and the size of packet headers used by the scheme. A routing scheme is compact
if the routing table at each node and every packet header have size at most a polylogarithmic function of the
number of nodes. In general, one would like to limit the number of links at each node to be polylogarithmic in
the number of nodes, while achieving a compact routing scheme with optimal stretch.

Recently, there have been several new developments on compact routing schemes in graphs or metrics of low
doubling dimension [11, 3, 9, 1, 6, 7, 8, 10], where the doubling dimension of a metric space is the minimum
α such that any ball of radius r can be covered by at most 2α balls of radius r/2. However, all the proposed
schemes assume that the node set V is fixed. Moreover, with exception of [10], most existing work assumes that
there is a centralized pre-configuration procedure for configuring the routing table at each node.

1.1 Our Contributions

In this paper, given a dynamic set of nodes V in a metric (M,d) of constant doubling dimension α, we present the
first fully dynamic optimal-stretch distributed compact routing schemes in both the labeled and name-independent
models with polylogarithmic storage, label and packet header sizes, and polylogarithmic amortized number of
messages for each node-join, leave or move operation. Furthermore, the total cost of updates caused by the
movement of a node v is proportional to the total distance v moves. These results follow directly from the three
theorems below.

We use Vt to denote the particular configuration of the node set V at time t (whenever clear from context,
we omit the parameter t). Let ∆t be the diameter of Vt at time t, i.e. ∆t = maxu,v∈Vt

d(u, v). Let ∆ be the
maximum diameter of V over time, i.e. ∆ = maxt ∆t. A node is a processor with compact memory and a
distinct name. As we will show in Section 5, we can use a distributed hash function which will enable us to
represent each of the node names using O(log ∆t) bits at any time t — the amortized cost of updating this hash
function whenever necessary has been taken into consideration in Theorem 1.3 below.

(Note that at each time, we have log|Vt| = O(log ∆t) because of the constant doubling dimension.)
We provide node join/leave/move protocols for nodes joining/leaving/moving within the metric. For a node

to join the network, it must have some arbitrary bootstrap node in the network it can connect with. We assume
that a node leaves the network in a graceful way, that is, the node always performs the node-leave protocol
before it leaves. We will maintain a hierarchical data structure with O(log ∆t) levels (we will specify the data
structure used in Section 2). When a node moves, a locality-sensitive node-move protocol at an appropriate
level of the hierarchy is performed. We guarantee that (i) for each movement of node u, a node-move protocol
at u is executed at a single level; and (ii) a level k node-move protocol at node u will only be executed if u has
moved to a point within distance at least 2k from the point where the last node-move protocol at level no less
than k was executed at node u.

Our main technical results on dynamic compact routing schemes are described in the following two theorems,
plus Theorem 1.3.

Theorem 1.1 Given a constant ǫ ∈ (0, 1) and a dynamic node set V in a metric with doubling dimension α, we
maintain a dynamic graph G(V,E) with (1/ǫ)O(α) log ∆ degree, and achieve an optimal (1 + ǫ)-stretch compact
labeled routing scheme on G with O(log2 ∆)-bit label size and O(log2 ∆)-bit storage at each node. Moreover, for
each node-move protocol at level k, it takes (1/ǫ)O(α) log ∆ · k amortized number of messages, and each message
traverses a path of distance O(2k/ǫ). In particular, it takes (1/ǫ)O(α) log2 ∆ messages for a node to join or to
leave the network.

1In this paper, we may abuse notation slightly by indistinctly referring to a node and the point it is mapped to, if clear from
the context.

1

Theorem 1.2 Given a constant ǫ ∈ (0, 1) and a dynamic node set V in a metric with doubling dimension α,
we maintain a dynamic graph G(V,E) with 2O(α) log2 ∆ degree, and achieve an optimal (9 + ǫ)-stretch compact
name-independent routing scheme on G with (1/ǫ)O(α) log3 ∆-bit storage at each node. Moreover, for each
node-move protocol at level k, it takes (1/ǫ)O(α) log4 ∆ · k2 amortized number of messages, and each message
traverses a path of distance O(2k/ǫ). In particular, it takes (1/ǫ)O(α) log6 ∆ amortized messages for a node to
join or to leave the network.

The stretch 9 of the name independent routing scheme in Theorem 1.2 is asymptotically optimal, since
the lower bound result of compact name-independent routing on graphs from [6] naturally extends to compact
name-independent routing in metrics.

One unique feature that distinguishes the name-independent routing scheme presented in this paper is that
it does not rely on an underlying labeled scheme for the actual routing in the network (as basically all of the
previous name-independent compact routing schemes in the literature [1, 6, 7, 8, 12] do): Since our scheme does
not have to update a node label (and inform all other relevant nodes in the data structure of the label change)
every time a nodes moves, our scheme is able to efficiently adapt to node movements, avoiding updates at higher
levels of the hierarchy whenever a node has not moved a long distance.

As hinted above, we provide a scale-control procedure which scales the above schemes according to the
dynamic variations in network size and diameter, as stated in Theorem 1.3. Let {∆ij

: j = 0, 1, · · · } be a
subsequence of {∆t : t = 0, 1, · · · } such that (i) ∆i0 = ∆0; (ii) |log ∆ij+1

− log ∆ij
| ≥ log 1

ǫ for all j; and (iii)
|log ∆ij

− log ∆k| ≤ log 1
ǫ + O(1) for all j and all ij ≤ k ≤ ij+1.

Theorem 1.3 The scale-control procedure for the network size is executed whenever the number of nodes is
squared or square-rooted. A constant amortized number of messages per node in the network is enough to
perform the operation.

The scale-control procedure for the diameter is executed at each time ij, for j = 0, 1, · · · . If ∆ij
< ∆ij−1

, a
constant amortized number of messages per node in the network is enough to perform the scale-control procedure
at time ij. If ∆ij

> ∆ij−1
, the scale-control procedure at time ij takes (1/ǫ)O(α) log6 ∆ij

amortized number of
messages per node in the current network.

Hence, the results in Theorem 1.1 and 1.2 still hold if we take to ∆ to be the current diameter of the network,
rather than the maximum diameter over time.

We believe that some of the novel data structures presented in this paper are a contribution in their own right,
since they open new directions for the design of dynamic network algorithms. In particular, the skeletal trees
presented in Section 3.3 appear much more suitable for the storage of dynamic information (such as routing
location information) than prior search trees which resulted from standard network decomposition (such as
search trees that directly mimic a hierarchical r-net decomposition of the network [9, 1, 6, 7, 8]). The main idea
behind the skeletal tree is that it recursively keeps large (in terms of number of nodes) branches of a cluster tree
and omits all the small branches. This makes a skeletal tree less sensitive to changes in the network topology
and more suitable for dynamic applications. In addition, we also present a locality-sensitive load-balancing
procedure which is used to (re-)balance our dynamic storage structure. The current distribution of load on the
storage structure determines (in a distributed fashion) when, where, and at which level to trigger load-balancing,
thus guaranteeing efficient costs for the load-balancing operations.

1.2 Related Work

A more general version of our problem is that of designing compact routing schemes on a given graph G(V,E).
Hence all compact routing schemes for graphs whose induced shortest-path metric is of low doubling dimension
also apply to our problem. However, all of the existing compact routing schemes [11, 3, 9, 1, 6, 7, 8] only consider
the static version of the problem. Nevertheless, our scheme not only efficiently adapts to dynamic changes in the
node set, but does so while still achieving optimal stretch factors and maintaining the polylogarithmic guarantees
on storage, label and packet header size (note however that the best-known static schemes are scale-free, i.e.
independent of the network diameter, while ours is not.). Another feature of most static schemes is that they
assume that there is a centralized preconfiguration procedure for configuring the routing tables. One exception
is the recent work by Slivkins [10] where he presents a decentralized procedure to build the routing tables.

Given a dynamic set of nodes V in a metric of doubling dimension α, Gottlieb and Roditty [4] provide a
dynamic (1 + ǫ)-spanner1 with degree O(1/ǫα) polylogarithmic update time for both insertions and deletions.
Based on their spanner, they propose a labeled routing scheme. However, the proposed labeled routing scheme
itself is static and the authors do not provide any efficient mechanisms for maintaining the routing information
and updating node labels as the spanner topology changes.

1A t-spanner of a set of nodes V in a metric (M, d) is a graph G(V, E) with weight d(u, v) for each edge (u, v) ∈ E such that

2

2 Dynamic Graph
Given a dynamic set of nodes V in a metric space (M,d) of doubling dimension α, for each routing scheme, we
define a virtual graph G′ = (V ′, E′), and a host mapping φ : V ′ → V that associates each virtual vertex in V ′

to a host node in V . This virtual graph will give us the necessary data structures to achieve the results outlined
in Theorems 1.1, 1.2, and 1.3. Thus it is natural to define the link set E = {(φ(x), φ(y)) : ∀(x, y) ∈ E′}.

The elements of the metric space M are called points. To avoid confusion between G(V,E) and the virtual
graph G′(V ′, E′), the elements of V and E are called nodes and links respectively, while the elements of V ′ and
E′ are called vertices and edges respectively. Each vertex x ∈ V ′ (resp., each node u ∈ V) corresponds to a
point pnt(x) (resp., pnt(u)) in M .

For any point x ∈M and r > 0, let the ball Bx(r) denote the set of points in M within distance r to x, i.e.
Bx(r) = {y ∈ M : d(x, y) ≤ r}. In the following, we give the definition of an r-net and present some of the
structural properties of an r-net, on which our hierarchical data structures are based.

Definition 2.1 (r-net) For any r > 1, a set Y ⊆M is an r-net if the distance of any pair of points y, y′ ∈ Y
is at least r, i.e. d(y, y′) ≥ r.

We say the r-net Y covers a set X ⊆ M if for any point x ∈ X there exists an r-net point y ∈ Y within
distance of r, i.e. |Y ∩Bx(r)| ≥ 1.

Lemma 2.2 ([5]) Let Y be an r-net in a metric space with doubling dimension α. For any point x in the

metric space and r′ ≥ r, we have |Y ∩Bx(r′)| ≤
(

4r′

r

)O(α)

.

2.1 Virtual Graph and Host Mapping

The virtual graph G′ consists of two hierarchies of 2i-nets: the parent hierarchy X = ∪h
i=0Xi and the cluster

header hierarchy Y = ∪h
i=0Yi, where h = log ∆. Let the parent set Xi be a 2i-net, for each i ∈ [h]2, and X0 = V .

Let the cluster header set Yi be a 2i-net covering Xi, for each i ∈ [h]. Actually we abuse the notation slightly;
when we say that, for example, Xi is a 2i-net, we mean that its point set pnt(Xi) ⊆ M is a 2i-net. Note that
we treat two vertices from different levels of Xi or Yi, or from X and Y respectively, as different vertices, even
if their corresponding points in M are identical.

We define three kinds of edge relationships as follows. For each node u ∈ V and each i ∈ [h], let pi(u) ∈ Xi

denote the parent of u at level i, which is selected by our dynamic protocols and initially has d(pi(u), pi−1(u)) ≤
2i. For each cluster header y ∈ Yi and i ∈ [h], let N(y) = Xi ∩By(2i/ǫ) be the neighborhood set of y. Since Yi

is a 2i-net covering Xi, for i ∈ [h], let f : Xi → Yi be the header mapping that maps each x ∈ Xi to a cluster
header y = f(x) ∈ Yi that covers x, i.e. d(y, x) ≤ 2i. Thus we defines edge sets: E′

1 = {(pi(u), pi−1(u)) : ∀u ∈
V,∀i ∈ [h]}, E′

2 = {(y, x) : ∀y ∈ Y,∀x ∈ N(y)}, and E′
3 = {(x, f(x)) : ∀x ∈ X}.

For each vertex x ∈ Xi and i ∈ [h], the host φ(x) is one of the nodes whose parent at level i is x, i.e.
pi(φ(x)) = x. For each vertex y ∈ Yi and i ∈ [h], let φ(y) = φ(x), for x ∈ Xi that minimizes d(x, y).

For labeled routing schemes, the virtual graph G′ = (V ′, E′) consists of V ′ = X ∪ Y , and E′ = E′
1 ∪

E′
2 ∪ E′

3. For name-independent routing schemes, moreover, we maintain a cluster tree CT (y) for each cluster
header y ∈ Y . For each x ∈ Xi and i ∈ [h], the descendant tree, denoted T (x), consists of paths 〈pi(u) =
x, pi−1(u), · · · , p0(u)〉 for all nodes u ∈ V s.t. x = pi(u), and the maximal common prefix of any two paths is
merged. That is, for any two such paths w.r.t. nodes u, v, let j be the minimal index such that d(pk(u), pk(v)) = 0
for all j ≤ k ≤ i; then vertices pk(u) and pk(v) are identical in T (x) for all j ≤ k ≤ i. For each cluster header
y ∈ Y , the cluster tree, denoted CT (y), consists of root y, edges (y, x) and descendant trees T (x) for all x ∈ N(y).

2.2 Restricted vs. General Models

We consider two models. In the restricted model, nodes are allowed to join or leave the network. In the general
model, we also allow nodes to move. For ease of explanation, we first present a labeled and a name-independent
scheme for the restricted model. The name-independent routing scheme relies on the labeled one. If we allow
nodes to move in the network, then the routing labels of these nodes may need to be changed, making any
dynamic name-independent scheme which relies on these routing labels rather inefficient. Hence, we show
in Section 4.3 how to modify the name-independent scheme presented for the restricted model to also work
efficiently on the general model, by “embedding” the routing labels of the nodes into the hierarchy of search
tree data structure used.

In the restricted model, the vertices in descendant trees are identical to their corresponding vertices in X.
Thus we still have V ′ = X ∪ Y and E′ = E′

1 ∪ E′
2 ∪ E′

3 for the name-independent routing scheme in the

the shortest path distance of any pair of nodes in G is their distance in the metric by a factor at most t.
2For any integer k ≥ 0, let [k] denote the set {0, 1, · · · , k}.

3

restricted model. However, in the general model, the vertices in each descendant tree are a distinct copy of their
corresponding vertices in X. The host map on these vertices is similar to the host map on X. However, the
number of links at each node for the general model is a factor of log ∆ larger than that for the restricted model.

Therefore we have V ′ = (X ∪ Y)
⋃

∪y∈Y V (CT (y)), and E′ = (E′
1 ∪ E′

2 ∪ E′
3)

⋃

∪y∈Y E(CT (Y)) for the
name-independent routing scheme in the general model.

3 Routing in the Restricted Model
In the restricted model, we consider routing schemes in metrics with nodes joining and leaving. Subsection 3.1
provides node join/leave protocols to maintain the hierarchies X and Y dynamically. In Subsection 3.2, a
labeled routing scheme is provided. For the name-independent routing scheme, Subsection 3.3 discusses how to
maintain a search tree for each cluster tree CT (y), ∀y ∈ Y , while Subsection 3.4 provides the routing algorithm.

3.1 Node Join/Leave Protocols

Given the dynamic node set V with nodes joining and leaving, the node join/leave protocols maintain the virtual
graph G′, the host mapping φ, and therefore the link set E. In the restricted model, we maintain a root vertex
r such that ph+1(u) = r for any u ∈ V . We update X = X ∪ {r} and E′

1 = E′
1 ∪ {(ph(u), ph+1(u)) : ∀u ∈ V }.

Invariant 3.1 In the restricted model, we preserve the following invariants:

• The graph (X,E′
1) is a tree rooted at r, i.e. the descendant tree T (r).

• d(p0(u), u) = 0, and d(r, u) ≤ 2h, for all u ∈ V .

• d(pi(u), pi−1(u)) ≤ 2i for i ∈ [h], and d(ph+1(u), ph(u)) ≤ 2h+1 + 2h.

• For a node u ∈ Y and ∀i ∈ [h], if vertex pi(u) is hosted at u, i.e. φ(pi(u)) = u, then for all k ≤ i vertices
pk(u) are hosted at u, i.e. φ(pk(u)) = u.

3.1.1 Node Join Protocol

The node join protocol is provided in Algorithm 1. When a new node u joins V , let i be the minimum index
s.t. ∃z ∈ Xi+1 ∩Bu(2i+1). Let pk(u) be the vertices on the path from t to z in T (r), for k = h + 1, h, · · · , i + 1.
We call procedure AddNewParent to add a new parent node x with pnt(x) = pnt(u) as pk(u), for k = i down to
0. Lines 5 to 10 of AddNewParent find a cluster header y in Yk ∩Bx(2k) for the newly added parent vertex x, or
add a new cluster header y if Yk ∩Bx(2k) is empty. Note that we append a new path 〈pi(u), pi−1(u), · · · , p0(u)〉
to the tree T (r) at z = pi+1(u). It is easy to verify that Invariant 3.1 is preserved.

3.1.2 Node Leave Protocol

The node leave protocol is provided in Algorithm 2. When an existing node u leaves V , let i be the maximum
index s.t. φ(pi(u)) = u and let j be the minimum index s.t. ∃v 6= u ∈ V , pj(v) = pj(u). In general, the leave
protocol deletes all parent vertices pk(u) for k = j − 1 down to 0 using procedure DeleteParent, while it uses
procedure UpdateHost to assign v as the host for all parent vertices and cluster headers with levels between i
and j that were previously hosted by u.

Note that when u is leaving, we remove the path 〈pj−1(u), · · · , p1(u), p0(u)〉 from T (r), and update the host
of pk(u), for each j ≤ k ≤ i, to such a v that pk(u) = pk(v) and φ(pj−1(v)) = v. In addition, if i = h + 1, i.e.
previously φ(r) = u, we also update pnt(r) = pnt(v) as well as updating φ(r) = v. Thus it is easy to verify
Invariant 3.1.

3.2 Labeled Routing

3.2.1 Labeling

We color each vertex x in X, using a color function c : X → [10O(α)] such that no two siblings in the descendant
tree T (r) share a color. That is, for any vertex x ∈ T (r), its children have different colors. Since the number
of children of any vertex in T (r) is at most 10O(α) by Lemma 2.2, we can always find a valid color for a newly
added vertex.

Thus for each u ∈ V , we assign its label ℓ(u) = 〈c(ph(u)), c(ph−1(u)), · · · , c(p0(u))〉. In addition, for each
vertex x ∈ Xi of T (r), define its label ℓ(x) = 〈c(xh), c(xh−1), · · · , c(xi)〉, where 〈r, xh, xh−1, · · · , xi = x〉 is a
path from the root r to x in T (r).

When a new node u joins V , we append a path to the tree T (r), as in Algorithm 1. When a node u leaves
V , a path from p0(u) up to a first vertex with at least two children in T (r) is removed, as in Algorithm 2. Thus
these topological changes do not affect the labeling of nodes other than u itself.

4

Algorithm 1: A new node u joins V

begin1:

Find minimum index i s.t.2:

∃z ∈ Xi+1 ∩Bu(2i+1)
Set pk(u) be the vertices on the path3:

from root to z, for k = h+1 downto i+1
for k = i downto 0 do4:

AddNewParent(u, k)5:

end6:

Procedure AddNewParent(u, k)1:

begin2:

Add a new vertex x with3:

pnt(x) = pnt(u) into Xk, and set
φ(x) = u
Set pk(u) = x and add x to N(y) for all4:

y ∈ Yk ∩Bx(2k/ǫ)
if ∃y ∈ Yk ∩Bx(2k) then5:

Set f(x) = y6:

if d(x, y) ≤ d(pk(v), y), where7:

v = φ(y) then Update φ(y) = φ(x)
else8:

Add a new vertex y with9:

pnt(y) = pnt(u) into Yk, and set
φ(y) = u
Set N(y) = Xk ∩By(2k/ǫ), and10:

f(x) = y

end11:

Algorithm 2: A node u leaves V

begin1:

Let i be the maximum index s.t. φ(pi(u)) = u2:

Let j be the minimum index s.t. ∃v 6= u ∈ V ,3:

pj(v) = pj(u)
W.l.o.g., pick v s.t. φ(pj−1(v)) = v4:

for k = i downto j do5:

UpdateHost(u, k, v)6:

for k = j − 1 downto 0 do7:

DeleteParent(u, k)8:

if i=h+1 then Set pnt(r) = pnt(v)9:

end10:

Procedure UpdateHost(u, k, v)1:

begin2:

Set φ(pk(u)) = v3:

Set φ(y) = v, ∀y ∈ Yk with φ(y) = u4:

end5:

Procedure DeleteParent(u, k)1:

begin2:

Remove x = pk(u) from Xk3:

for all y ∈ Yk ∩Bx(2k/ǫ) do4:

Remove x from N(y)5:

if N(y) = ∅ then Remove y from Yk6:

else if φ(y) = u then7:

Set φ(y) = φ(z), where z ∈ N(y) that8:

minimizes d(z, y)

end9:

3.2.2 Routing Algorithm

Let each cluster header y ∈ Y store all labels of vertices x ∈ N(y). The labeled routing algorithm is
given in Algorithm 3. Given the label of the destination v, it searches for a parent of v along the path
〈p0(u), p1(u), · · · , pi(u), · · · 〉 of the source node u by checking whether ∃x ∈ N(f(pi(u))) s.t. ℓ(x) is a prefix of
ℓ(v). If yes, then x is the parent of v at level i. Thus it simply go down to v along the path 〈pi(v), pi−1(v), p0(v)〉
according to the label of v.

Algorithm 3: Labeled routing from a node u to v, given the label ℓ(v)

for i = 0 to h do1:

if ∃x ∈ N(f(pi(u))) s.t. ℓ(x) is a prefix of ℓ(v) then break ; /* x = pi(v) */2:

for k = i− 1 downto 0 do3:

Let x′ ∈ Xk be a child of x s.t. c(x′) = c(pk(v))4:

x← x′
5:

return φ(x) ; /*φ(x) = v*/6:

Theorem 3.2 Given a constant ǫ ∈ (0, 1) and a dynamic node set V with nodes joining and leaving in a
metric with doubling dimension α, we maintain a dynamic graph G with degree (1/ǫ)O(α) log ∆, and achieve a
(1 + O(ǫ))-stretch compact labeled routing scheme on G with O(α log ∆)-bit label size and (1/ǫ)O(α) log2 ∆-bit
storage at each node. In addition, (1/ǫ)O(α) log ∆ messages suffice for a node to join or to leave the network.

Proof: Note that the degree of the virtual graph G′ is (1/ǫ)O(α). At each level i, a node u hosts at most one
parent vertex pi(u), and at most all cluster headers in Yi ∩Bpi(u)(2

i/ǫ) which has size at most (1/ǫ)O(α). Thus

the degree of G is at most (1/ǫ)O(α) log ∆.

5

Since there are 10α colors, the label can be expressed in O(α log ∆) bits. Since N(y) = (1/ǫ)O(α) by
Lemma 2.2, each cluster header y ∈ Y stores (1/ǫ)O(α) log ∆ bits of information. Since one node hosts at most
(1/ǫ)O(α) log ∆ cluster headers, it stores at most (1/ǫ)O(α) log2 ∆ bits of information.

Let i be the minimum index such that pi(v) ∈ N(f(pi(u))). By minimality, we have d(pi−1(v), f(pi−1(u))) >
2i−1/ǫ, which implies d(u, v) > 2i−1(1/ǫ + O(1)). In the virtual graph G′, the routing cost is d(pi(u), pi(v)) +
O(2i) ≤ d(u, v) + O(2i), while the cost in the real graph is still at most d(u, v) + O(2i) by Invariant 3.1. This
implies stretch 1 + O(ǫ).

In addition, for a node u joining or leaving the network, we just add or delete the label of u at each cluster
header Yi ∩Bpi(u)(2

i/ǫ), for each i ∈ [h]. Thus (1/ǫ)O(α) log ∆ messages suffice to complete the operation.

3.3 Search Trees

For name-independent routing schemes, we maintain a search tree for each cluster tree. The search tree stores
the routing data of nodes within its corresponding cluster tree keyed by the node names. In this Subsection, we
introduce the concept of skeletal trees, which is used for search trees. Then we give a dynamic load balancing
procedure on search trees. Finally we show how to update search trees to work with Algorithms 1 and 2 and
what the cost is.

3.3.1 Skeletal Trees

It might be natural to use cluster trees themselves as search trees in static networks. However, in order
to compensate for frequent changes in dynamic networks, we maintain a search tree on a subgraph of its
corresponding cluster tree to make it relatively insensitive to network changes. Intuitively, the subgraph, called
skeletal tree, contains large (in terms of the number of nodes) branches but omits small branches of the cluster
tree.

Definition 3.3 (Skeletal Tree) Given a cluster tree CT (y), for y ∈ Yi and i ∈ [h], let CTy(x) denote the
subtree rooted at x of CT (y), and let sy(x) denote the number of leaves in the subtree CTy(x), for all vertices
x ∈ CT (y). The skeletal tree of CT (y), denoted ST (y), is the subgraph of CT (y) including (i) the root y; and
(ii) any edge (x, z) of CT (y), where z is a child of x in CT (y), if x ∈ ST (y) and sy(z)/sy(x) ≥ 1

b·(i+1) , where

b =
(

4
ǫ

)α
. We denote the subtree of ST (y) rooted at x by STy(x), for any vertex x ∈ ST (y).

Note that the degree of CT (y) is b, and its height is i. Thus we have the following lemma:

Lemma 3.4 Given any y ∈ Yi and i ∈ [h], the ratio of the number of leaves in the skeletal tree ST (y) and the
number of leaves in the cluster tree CT (y) is no less than (1− 1

i+1)i > e−1 (where e ≈ 2.71828).

For each cluster tree CT (y), ∀y ∈ Y , we maintain a search tree on its skeletal tree ST (y) to store the routing
data of all leaves (i.e. the real nodes) in CT (y) using node name as the key. For each vertex x ∈ ST (y),
let Rangey(x) be the minimal interval that contains all keys stored in STy(x). Then the interval of the root
vertex, Rangey(y), is the whole range of the key space, while for any vertex x ∈ ST (y), the set {Rangey(z) :
z is a child of x} is a partition of Rangey(x). A key k together with its associated data is inserted into the leaf
z of ST (y) such that k ∈ Rangey(z) along the path from the root y to the leaf z. Let each leaf z of ST (y)
keep its stored keys in a sorted list, denoted Listy(z). Let Listy(x) denote the sorted list of all keys stored in
STy(x). Note that we can enumerate keys in Listy(x) by enumerating keys in each list Listy(z), for all leaves
z in STy(x) in a preorder traversal of the subtree.

Given a key k and a search tree ST (y), y ∈ Yi and i ∈ [h], the search procedure on ST (y) searches for k
along the path from the root to a leaf such that any vertex x on the path has k ∈ Rangey(x), and goes back to
the root with the data or with the “not-found” message. This takes 2i messages and 2i+1(1/ǫ + O(1)) delay.

3.3.2 Load Balancing

Whenever the structure of a search tree changes due to the network changes, we want to perform a balancing
procedure to balance the load on nodes. In addition, if the load on a node is too heavy due to the unbalance
of newly inserted keys, we also want to trigger load balancing across regions with heavy load. The following
lemma gives a load balancing procedure and its performance:

Lemma 3.5 (Load Balancing) Given a subtree STy(x) of any search tree ST (y), for y ∈ Y and x ∈ ST (y),
there is a load balancing procedure on STy(x) for keys in Listy(x) that restores these keys in STy(x) such that
every leaf stores an equal number of keys; and it takes O(k ·|Listy(x)|) messages, where k is the height of STy(x).

Proof: Recall that the list Listy(x) consists of lists Listy(z), for all leaves z of STy(x), in a preorder traversal
of STy(x). Thus we consider the load balancing procedure that, given a list of keys Listy(x), stores an equal

6

number of keys in each leaf of STy(x) in a preorder traversal. Note that it takes O(k) messages to find the next
key in the original list, and O(k) messages to go to the next available storage leaf, since the successor operator
at STy(x) takes O(k) messages. In addition, it takes O(k) messages to copy a key leaf-to-leaf in STy(x). Overall
it takes O(k · |Listy(x)|) messages to complete the load balancing procedure at STy(x) for keys in Listy(x).

Now we consider when to trigger the load-balancing procedure. For example, there are too many new nodes
arriving at the cluster tree CT (y) with their names within Rangey(x) for a fixed leaf x of ST (y). However,
by Lemma 3.4 a load-balancing procedure on the whole search tree is able to average the load on each leaf
to be a constant number of (key, data) pairs. On the other hand, since the cost of a balancing procedure is
proportional to the number of keys stored in the tree where the procedure is performed, we trigger the procedure
on a restricted area of the search tree, rather than always on the whole search tree.

For each cluster tree CT (y), ∀y ∈ Y , we maintain a counter ty(x) for each vertex x in the search tree ST (y):
(i) initially ty(x) is set to zero; (ii) whenever a key inserted in the search tree ST (y) is stored in the subtree
STy(x), ty(x) is increased by one; (iii) when ty(x) reaches s(x), i.e. the number of leaves of T (x), load-balancing
is executed on the subtree STy(x) for the keys in Listy(x), and ty(z) is reset to zero for all vertices z ∈ STy(x).

3.3.3 Dynamic Maintenance of Search Trees

In the restricted model, we reuse the vertices in X ∪ Y for cluster trees. Here we discuss the maintenance of
search trees according to Algorithms 1 and 2.

Node Joins When a new node u joins V , there are three kinds of updates with regard to each search tree
ST (y), ∀y ∈ Yi and ∀i ∈ [h], s.t. pi(u) ∈ N(y):

• Insert the (key, data) pair of u into ST (y), which takes O(i) messages. By Lemma 2.2, there are at most
(1/ǫ)O(α) nodes y ∈ Yi such that pi(u) ∈ N(y). Thus it takes O((1/ǫ)O(α) log2 ∆) messages to insert the
routing information of u into all such search trees ST (y) over all i ∈ [h].

• The structure of the skeletal tree ST (y) might change due to the insertion of u. The number of leaves of
each subtree CTy(z), ∀z ∈ CT (y), that contains p0(u) is increased, which might result in the addition of the
branch STy(z) to the skeletal tree ST (y) at z’s parent x if sy(z)/sy(x) ≥ 1

b·(i+1) . In that case, we perform

load balancing on the updated subtree STy(x) for the list Listy(x), which takes k · |Listy(x)| messages, where
k is the height of STy(x), i.e. x ∈ Xk.

• If the cluster header y is just added as in Line (9) of AddNewParent procedure, the search tree ST (y) is
created for the new cluster tree CT (y). Each node in CT (y) inserts its routing information into ST (y).

In addition, after the insertion of a key, load balancing might be triggered.

Node Leaves When a node u leaves V , there are three kinds of updates with regard to each search tree
ST (y), ∀y ∈ Yi and ∀i ∈ [h], s.t. pi(u) ∈ N(y):

• Delete the routing information of u from ST (y), which takes O(i) messages.

• The structure of the skeletal tree ST (y) might change due to the deletion of u. The number of leaves of
each subtree CTy(z), ∀z ∈ CT (y), that previously contained p0(u) is increased, which might result in the
removal of the branch STy(z) from the skeletal tree ST (y) at z’s parent x. However, we remove the branch
STy(z), only if sy(z)/sy(x) < 1

2b·(i+1) , instead of sy(z)/sy(x) < 1
b·(i+1) . This helps avoid repeated addition

and removal of the same branch with only several nodes joining and leaving. In addition, a load-balancing
procedure on the updated subtree STy(x) is performed for the old list Listy(x), which takes k · |Listy(x)|
messages, where k is the height of STy(x), i.e. x ∈ Xk.

• If y is being removed as in Line (6) of DeleteParent procedure, we do nothing, since N(y) = ∅, i.e. u was
the only node in CT (y) previously.

3.3.4 Cost of Dynamic Maintenance

Lemma 3.6 For each search tree ST (y), ∀y ∈ Yi and i ∈ [h], each leaf stores at most (1/ǫ)O(α) · i2 keys. For
the dynamic maintenance of ST (y), it takes (1/ǫ)O(α) · i5 amortized messages per node.

Proof: By Lemma 3.4, each leaf stores a constant number of keys in average. Let z be a child of x, for a node
x in CT (y). Whenever ty(x) = s(x), we trigger a load-balancing procedure at the subtree CTy(x). Thus in
the worst case, between any two load-balancing procedures on CTy(x), there are at most s(x)− 1 keys inserted
into CTy(z). Since the subtree CTy(z) also performs load-balancing whenever there are s(z) keys inserted, and

7

since s(x)/s(z) ≤ (1/ǫ)O(α) · i, in the worst case, these s(x)− 1 keys give (1/ǫ)O(α) · i additional keys per leaf in
CTy(z) just after the last load-balancing procedure at CTy(z). Thus by counting all levels, in the worst case, a
leaf in ST (y) stores at most (1/ǫ)O(α) · i2 keys.

The cost of maintaining ST (y) comes from the load-balancing caused by the changes in the tree structure,
and by the unbalanced insertions of keys. We use amortized analysis with one credit for each message.

Let’s consider the changes in the search tree structure. During the insertion of a node u into the cluster tree
CT (y), whenever we increase sy(z) by one, where z = pk(u) ∈ CT (y) and k ∈ [i], we deposit (1/ǫ)O(α) · i3 · k
credits. Thus when we add the branch STy(z) into the search tree ST (y) at vertex x = pk+1(u), we have
(1/ǫ)O(α) · i3 ·k ·sy(z) credits to do the balancing at CTy(x). The procedure costs at most (1/ǫ)O(α) · i2 ·k ·sy(x)
messages since each leaf has at most (1/ǫ)O(α) · i2 keys. Since sy(x)/sy(z) = (1/ǫ)O(α) · i, we have enough
credits for the cost of the procedure. Thus the total number of credits deposited by the insertion of a node
is

∑i
k=0(1/ǫ)O(α) · i3 · k = (1/ǫ)O(α) · i5. Since we remove the branch STy(z) from ST (y) at x only when

sy(x)/sy(z) < 1
2b·(i+1) compared to the ratio 1

b·(i+1) at which we add the branch STy(z), by a similar argument,

we pay (1/ǫ)O(α) · i5 credits for the deletion of a node.
Now consider the cost caused by the unbalanced insertions of keys. During the insertion of a key k into

ST (y), whenever we increase ty(x) by one, for x ∈ Xk ∩ CT (y) s.t. k ∈ Rangey(x) and k ∈ [i], we deposit
(1/ǫ)O(α) · i2 · k credits. Thus when ty(x) = s(x), we have (1/ǫ)O(α) · i2 · k · s(x) credits to do the balancing at
CTy(x), which costs at most (1/ǫ)O(α) · i2 · k · s(x) messages. Hence the total credits deposited by the insertion

of a key is
∑i

k=0(1/ǫ)O(α) · i2 ·k = (1/ǫ)O(α) · i4. Therefore each dynamic maintenance operation on ST (y) takes
(1/ǫ)O(α) · i5 amortized messages per node.

Since a node belongs to at most (1/ǫ)O(α) cluster trees at each level, we have the following corollary.

Corollary 3.7 Each node in V stores (1/ǫ)O(α) log3 ∆-bit routing information. It takes (1/ǫ)O(α) log6 ∆ amor-
tized messages for a node to join or to leave the network.

3.4 Name-Independent Routing

For each node u ∈ V , let n(v) denote the arbitrary original node name, and assume that each name is represented
in O(log n) bits; the label ℓ(u) defined in Section 3.2 has size of O(α log 1

ǫ log ∆) bits. For each y ∈ Y , we maintain
a search tree on the skeletal tree ST (y) to store the labels ℓ(u) of all real nodes u (i.e. the leaf vertices) in the
cluster tree CT (y) using the name of u as the key. Thus every time a node u wants to communicate with a
node v given n(v), node u queries search trees along its parents to retrieve the label ℓ(v) using n(v), and then
routes to v using the underlying labeled routing scheme. The routing algorithm is presented in Algorithm 4.

Algorithm 4: Name-independent routing from a node u to v, given the name of v

for i = 0 to h do1:

Search on the search tree ST (y) for the key n(v), where y = f(pi(u))2:

if the data ℓ(v) for the key n(v) is found then3:

Go to v using the underlying labeled routing scheme, and terminate the algorithm4:

Lemma 3.8 The name-independent routing scheme has stretch 9 + O(ǫ).

Proof: Let j be the index such that the if condition in Line 3 of Algorithm 4 is satisfied, i.e. the label
of v is found. Since the label of v is not found at level j − 1, we have that pj−1(v) is not in N(f(pj−1(u))).
Thus d(pj−1(v), pj−1(u)) ≥ 2j−1/ǫ − 2j−1. Since the cost of the search procedure at a search tree of level

i is 2i+1/ǫ + O(2i), the total routing cost in the virtual graph is
∑j

i=0 2i+1/ǫ + d(pj(u), pj(v)) + O(2j) ≤
2j+2/ǫ + d(u, v) + O(2j) ≤ (9 + O(ǫ))d(u, v).

By Invariant 3.1, the cost in the real graph is still bounded by (9 + O(ǫ))d(u, v).

4 Routing in the General Model
In this section, we consider dynamic routing in metrics with nodes joining, leaving and moving.

4.1 Dynamic Graph

In the general model, we allow nodes to move, and seek locality-sensitive protocols, in that the performance
bounds depend on the range of motion of a node. Thus we are neither able to maintain (X,E1) as the tree
structure of T (r), nor able to reuse the vertices ∈ X for the cluster trees.

8

4.1.1 Dynamic Protocols

The node join/leave protocols are presented in Algorithms 5 and 6 respectively, which are based on the subpro-
cedures AddNewParent and DeleteParent in Section 3.1. The main difference to the restricted model versions
of these protocols is that we are not able to just append or delete a path into the global tree T (r) when a node
joins or leaves as in the restricted model, but we update its parent vertices level by level.

The node move protocol at node u is presented in Algorithm 7. Let i be the maximal index s.t. d(pj(u), u) >
2j+1, ∀j ∈ [i]. Then for level k from i down to 0, we combine both the loop actions of Algorithms 5 and 6, i.e.
deleting the old parent vertex pk(u), and assigning a new parent vertex pk(u) within Bu(2k).

By Algorithm 7, whenever a node u updates pi(u) due to the movement of u, we have d(pi(u), u) > 2i+1

before the update; and by Algorithms 5, 6 and 7, we always assign a new pi(u) in Xi ∩ Bu(2i) to u. Thus we
have:

Invariant 4.1 Whenever a node u updates pi(u) due to the movement of u, we have d(pi(u), u) > 2i+1 before
the update and d(pi(u), u) ≤ 2i after the update.

Algorithm 5: A new node u joins V

for k = h downto 0 do1:

if ∃x ∈ Xk ∩Bu(2k) then Set pk(u) = x2:

else AddNewParent(u, k)3:

Algorithm 6: A node u leaves V

for k = h downto 0 do1:

if ∃v 6= u ∈ V s.t. pk(v) = pk(u) then2:

UpdateHost(u, k, v)3:

else DeleteParent(u, k)4:

Algorithm 7: A node u moves

Let i be the maximal index s.t.1:

d(pj(u), u) > 2j+1, ∀j ∈ [i]
for k = i downto 0 do2:

if ∃v 6= u ∈ V s.t. pk(v) = pk(u) then3:

UpdateHost(u, k, v)4:

else DeleteParent(u, k)5:

if ∃x ∈ Xk ∩Bu(2k) then Set pk(u) = x6:

else AddNewParent(u, k)7:

4.2 Labeled Routing

For each node u ∈ V , let its label ℓ(u) = 〈pnt(ph(u)), pnt(ph−1(u)), · · · , pnt(p0(u))〉. Assume that any point in
the metric can be expressed in log ∆ bits. Thus the label has log2 ∆ bits. The structure of the routing algorithm
remains the same as Algorithm 3, except that (i)in Line 2 we check whether pi(v) ∈ N(f(pi(u))) by testing
whether d(pnt(pi(v)), f(pi(u))) ≤ 2i/ǫ; and (ii) in Line 4 the algorithm goes down from pk+1(v) to pk(v) by
selecting a child of pk+1(v) with its point equal to pnt(pk(v)). By a similar argument as in Theorem 3.2, we
have Theorem 1.1.

4.3 Name-Independent Routing

We color each vertex x in X, using a color function c : X → [20O(α)] such that no two siblings in X share a
color, where we say two vertices x, x′ ∈ Xi, ∀i ∈ [h− 1], are sibling if ∃z ∈ Xi+1 s.t. edges (z, x) and (z, x′) are
in E′

1. Note that the number of siblings of any vertex in X is at most 20O(α) by Lemma 2.2 and Invariant 4.1.
Thus we can always find a valid color for a newly added vertex.

For each cluster tree CT (y), ∀y ∈ Yi and ∀i ∈ [h], the search tree ST (y) still uses n(u) as the key, for all
real nodes u in CT (y), but stores the ID of pi(u) and colors 〈c(pi(u)), c(pi−1(u)), · · · , c(pi−log(1/ǫ)(u))〉 as the

data. The ID of pi(u) takes O(α log(1/ǫ)) bits, since pi(u) ∈ N(y) and |N(y)| = (1/ǫ)O(α).
The improved name-independent routing scheme is presented in Algorithm 8, which is similar to Algorithm 4.

The main difference is that we are no longer able to use the labeled routing scheme. Thus once we get the color
data of v at level i, we are only able to go down to pi−log(1/ǫ)(v). Then we recursively get the color data of v
at level i− log(1/ǫ) by querying the search tree ST (f(pi−log(1/ǫ)(v))) and go down log(1/ǫ) levels further.

Proof of Theorem 1.2: Note that a node u might have 2O(α)i links in each descendant tree T (pi(u)), ∀i ∈ [h].
Thus, overall the number of links at u is 2O(α) log2 ∆.

By Lemma 3.6, we achieve the same result for the name-independent routing scheme in the general model
as in Corollary 3.7. By a similar argument of Lemma 3.6, for each node-move protocol at level k, it takes
(1/ǫ)O(α) log4 ∆ · k2 amortized number of messages, and each message traverses a path of distance O(2k/ǫ). By
a more careful argument as in 3.8, Algorithm 8 achieves 9 + O(ǫ) stretch. Thus Theorem 1.2 follows.

9

Algorithm 8: Improved name-independent routing from a node u to v, given the name of v

for i = 0 to h do1:

y ← f(pi(u))2:

Go to y, and search on the search tree ST (y) for the key n(v)3:

if the data 〈c(pi(v)), c(pi−1(v)), · · · , c(pi−log(1/ǫ)(v))〉 for the key n(v) is found then4:

Go to pi(v); and break5:

while true do6:

Go down to pi−log(1/ǫ)(v) from pi(v) using the color data7:

if we reach p0(v) then terminate the algorithm8:

i← i− log(1/ǫ)9:

Search on the search tree ST (f(pi(v))) for the key n(v)10:

5 Scale-Control Procedure
In this section, we provide a scale-control procedure to adapt our schemes to dynamic network size and diameter.

First we discuss how to adapt our schemes to a dynamic number of nodes in the network. Note that the
original node name might be expressed in log n bits, where n is the total number of nodes over all time. However
the number nt of nodes at the current time t, might be much less than n. We use a universal hash function
to hash the original names into a value of c log nt bits, where c > 2 is a constant. Carter and Wegman [2]
provides such universal hash function that is represented in O(log nt) bits. Whenever the number of nodes in
the network is squared or square-rooted, we update the hash function so that the number of bits for each hash
value increases or decreases c bits.

Second, we discuss how to adapt our schemes to dynamic network diameter. We update the hierarchical
level h according to the changes in the network diameter.

Invariant 5.1 We preserve two invariants: (i) N(f(x)) = Xh,∀x ∈ Xh; and (ii) |Xh−log 1
ǫ
| > 1.

Whenever we insert a new vertex into Xh, we check whether Invariant 5.1 (i) is preserved. The invariant
is not preserved, iff the diameter increases to 2h/ǫ. We recursively define the parent set Xh+i ⊆ Xh+i−1 to be
a 2h+i-net covering Xh+i−1, for i = 1 up to a value j s.t. |Xh+j | = 1 (Note that j = log 1

ǫ + O(1)). In the
meanwhile, we add cluster header sets Yh+i = Xh+i for i = 1, · · · , j, the cluster tree and the search tree for
each newly added cluster header. Then we update h = h + j. Note that by Lemma 3.6, (1/ǫ)O(α)h6 amortized
messages per node in the current network suffice for the operation.

Whenever we delete a vertex in Xh, we check whether Invariant 5.1 (ii) is preserved. If not, we drop all
Xh−k and Yh−k for k = 0, · · · , log 1

ǫ − 1, and update h = h− log 1
ǫ . Note that a constant amortized number of

messages per node in the current network suffice for the operation.
Thus we achieve the result in Theorem 1.3.

6 Discussion and Future work
There are a number of directions that should be investigated further. The delay in dynamic protocols results
from two basic operations: the creation of new search trees and load balancing. For search tree creation, merge
sort may help. We maintain a search tree for each descendant tree T (x), to store the keys of nodes. Thus
for a new cluster tree CT (y), instead of inserting keys for all nodes in CT (y), we just merge all sorted lists
in the search trees of all descendant trees T (x), ∀x ∈ N(y), into a single list for ST (y). For load-balancing, a
divide-and-conquer approach may be useful. Note that the load-balancing procedure distributes a sorted list
across a search tree. With the help of the search tree, it is easy to divide the sorted list into equal-size segments
and then let the node of each segment send the segment to the destination in parallel.

Another issue is the control of hot-spot nodes in the case where the bandwidth of each link is limited.
For example, roots of search trees may suffer from congestion. Further, in this paper, we only consider one
topology change at a time. Can our routing schemes be improved to deal with multiple concurrent changes of
the topology? Finally, it would be interesting to generalize the compact routing problems to dynamic graphs.

10

References
[1] I. Abraham, C. Gavoille, A. V. Goldberg, and D. Malkhi. Routing in networks with low doubling dimension.

In Proceedings of the 26th IEEE International Conference on Distributed Computing Systems, page 75, 2006.

[2] J. L. Carter and M. N. Wegman. Universal classes of hash functions. Journal of Computer and Systems
Sciences, 18:143–154, 1979.

[3] H. T.-H. Chan, A. Gupta, B. Maggs, and S. Zhou. On hierarchical routing in doubling metrics. In
Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms, pages 762–771, 2005.

[4] L.-A. Gottlieb and L. Roditty. Improved algorithms for fully dynamic geometric spanners and geometric
routing. In Proceedings of the 19th ACM-SIAM Symposium on Discrete Algorithms, 2008.

[5] A. Gupta, R. Krauthgamer, and J.R.Lee. Bounded geometries, fractals and low-distortion embeddings. In
Proceedings of the 44th IEEE Symposium on Foundations of Computer Science, pages 534–543, 2003.

[6] G. Konjevod, A. Richa, and D. Xia. Optimal-stretch name-independent compact routing in doubling
metrics. In Proceedings of the 25th ACM Symposium on Principles of Distributed Computing, pages 198–
207, 2006.

[7] G. Konjevod, A. Richa, and D. Xia. Optimal scale-free compact routing schemes in networks of low doubling
dimension. In Proceedings of the 18th ACM-SIAM Symposium on Discrete Algorithms, pages 939–948, 2007.

[8] G. Konjevod, A. Richa, D. Xia, and H. Yu. Compact routing with slack in low doubling dimension. In
Proceedings of the 26th ACM Symposium on Principles of Distributed Computing, 2007.

[9] A. Slivkins. Distance estimation and object location via rings of neighbors. In Proceedings of the 24th ACM
Symposium on Principles of Distributed Computing, pages 41–50, 2005.

[10] A. Slivkins. Towards fast decentralized construction of locality-aware overlay networks. In Proceedings of
the 26th ACM Symposium on Principles of Distributed Computing, 2007.

[11] K. Talwar. Bypassing the embedding: algorithms for low dimensional metrics. In Proceedings of the 36th
ACM Symposium on Theory of Computing, pages 281–290, 2004.

[12] D. Tschopp, S. Diggavi, and M. Grossglauser. Hierarchical routing in dynamic α-doubling networks.
Technical report, 2007. http://licos.epfl.ch/Papers/TDGdoubling.pdf.

11

Appendices

A Notation List
• (M,d): A metric space, where M is a set of points, d : M ×M → R+ is a distance function, and assume

minx6=y∈Md(x, y) = 1

• Bx(r) for a point x ∈M and r ∈ R+: A set of points in M within distance r to x

• α: The doubling dimension of M , i.e. the least value α such that any ball Bx(r) in M can be covered by
at most 2α balls with half the radius

• V : The dynamic set of nodes

• ∆: The maximum diameter of the node set V over all time

• n: The total number of nodes over all time

• h = log ∆: The highest level of the hierarchies

• ǫ: The small addition to the stretch (The labeled routing scheme has stretch 1 + O(ǫ), while the name-
independent routing scheme has stretch 9 + O(ǫ))

• Xi: A parent set of vertices at level i, which is a 2i-net, for i ∈ [h]

• Yi: A cluster header set, which is a 2i-net covering Xi, for i ∈ [h]

• pi : V → Xi: A parent mapping at level i that maps each node u in V to a parent vertex pi(u) in Xi

• f : Xi → Yi: A header mapping that maps any vertex x in Xi to a cluster header vertex f(x) in Yi s.t.
d(x, f(x)) ≤ 2i

• N : Yi → Xi: A neighborhood mapping that maps any cluster header y ∈ Yi to a set of parent vertices in
Xi within distance 2i/ǫ to y, i.e. N(y) = Xi ∩By(2i/ǫ)

• CT (y) for each y ∈ Yi: A cluster tree over nodes whose parents at level i are in the neighborhood N(y)

• X = ∪h
i=0Xi

• Y = ∪h
i=0Yi

• V ′ = X ∪ Y ∪ ∪y∈Y V (CT (y)): The set of virtual vertices

• E′ = E′
1 ∪ E′

2 ∪ E′
3 ∪ ∪y∈Y E(CT (y)): The set of virtual edges

• φ : V ′ → V : A host mapping that maps any virtual vertex in V ′ to a real node in V

• E = {(φ(x), φ(y)) : (x, y) ∈ E′}: The set of links such that the two end nodes of any link are able to
communicate directly

• G′ = (V ′, E′): The virtual graph

• G = (V,E): The real dynamic graph

• pnt : V ∪V ′ →M : A point mapping that associates any node in V and any virtual vertex in V ′ to a point
in M

• Points: elements in M ; Nodes: elements in V ; Vertices: elements in V ′; Links: elements in E; Edges:
elements in E′

• Restricted vs. General Models: In the restricted model, nodes are allowed to join and leave the network,
while in the general model, nodes are allowed to join, leave, and move.

• r in the restricted model: the root vertex such that ph+1(u) = r, ∀u ∈ V

12

• c : X → constantO(α): a color function s.t. no two siblings share a color, where we say two vertices
x, x′ ∈ Xi are sibling if ∃z ∈ Xi+1 s.t. edges (z, x), (z, x′) are in E′

1

• ℓ(u): the label of u, that is ℓ(u) = 〈c(ph(u)), c(ph−1(u)), · · · , c(p0(u))〉 in the restricted model, and ℓ(u) =
〈pnt(ph(u)), pnt(ph−1(u)), · · · , pnt(p0(u))〉 in the general model

• n(u) for all u ∈ V : the name of u

A.1 The notation list with regard to search trees

• ST (y) for each y ∈ Yi: A skeletal tree of the cluster tree CT (y), which is also referred to as the search
tree for CT (y)

• CTy(x) for y ∈ Yi, i ∈ [h] and x ∈ CT (y): the subtree rooted at x of the cluster tree CT (y)

• STy(x) for y ∈ Yi, i ∈ [h] and x ∈ ST (y): the subtree rooted at x of the skeletal tree ST (y)

• sy(x) for y ∈ Y and x ∈ CT (y): the number of leaves in the subtree CTy(x)

• Rangey(x) for y ∈ Y and x ∈ ST (y): the minimal interval that contains all keys stored in STy(x)

• Listy(x) for y ∈ Y and x ∈ ST (y): the sorted list of all keys stored in STy(x)

• ty(x) for y ∈ Y and x ∈ ST (y): A counter at x that increases by one whenever a key is inserted to STy(x),
and triggers a load balancing when ty(x) = sy(x)

13

