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Abstract. We present new decentralized storage systems that are re-
silient to arbitrary failures of up to a half of all servers and can tolerate
a computationally unbounded adversary. These are the first such re-
sults with space requirements smaller than those of full replication with-
out relying on cryptographic assumptions. We also significantly reduce
share sizes for robust secret-sharing schemes with or without an honest
dealer, again without cryptographic assumptions. A major ingredient in
our systems is an information verification scheme that replaces hashing
(for storage systems) or information checking protocols (for secret shar-
ing). Together with a new way of organizing verification information,
this allows us to use a simple majority algorithm to identify with high
probability all servers whose information hasn’t been corrupted.
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1 Introduction

In a distributed storage system subject to failures, redundancy needs to be in-
troduced so that data can be correctly retrieved. A simple form of redundancy is
full replication. For example, t crash failures can be tolerated by replicating the
data on t+ 1 servers, while t Byzantine failures can be tolerated by replicating
the data on 2t+1 servers. To retrieve the data, a client reads from all the servers
and accepts the value returned by a majority. One can think of replication as a
form on information verification: the value stored at one server is used to verify
the information stored at another. If one server is correct and the value it stores
is identical to the value at another server, then the value at the other server is
also correct. This is the basis for using majority to retrieve the correct value.
In general, the verification information should make it impossible or hard (in
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an information-theoretic or a computational sense) for a server to provide cor-
rupt information without being detected. This is the no cheating requirement
for verification information.

In a secret sharing scheme [1], a dealer has a secret and distributes its shares
to n participants in such a way that any t + 1 shares can be used to recover
the secret, but any t shares provide no information about it. A secret sharing
scheme consists of two protocols executed by the dealer and the participants.
In the sharing phase the dealer distributes the shares, and in the reconstruction
phase the participants open their shares (make them available to each other)
in order to reconstruct the secret. Robust secret sharing schemes [2] are those
that can tolerate faulty participants. In these schemes, the dealer provides par-
ticipants with verification information that allows detection of corrupt shares
during the reconstruction. The definition of secret sharing imposes an additional
requirement on the verification information held by any participant: it should
leak no information about the share (data) that it verifies. This is the no leakage
requirement for verification information.

The size of the verification information is an important performance measure.
In a distributed storage system, the ratio of the total space used to store the
data to the size of actual data is called the space blow-up. (For full replication,
this ratio is equal to n.) By using error-correcting codes [3, 4], the blow-up can
be reduced to n/(n − 2t), where t < n/2 is the number of faulty servers (it is
clear that in general, a correct majority is needed to retrieve the stored data).
In a system of n servers, if 2t is close to n, this factor becomes Ω(n) and in
fact, Krawczyk [4] proves that n/(n−2t) is the optimal space blowup unless the
solution allows for a positive probability of error. He introduces a distributed
fingerprinting scheme based on one-way hash functions to circumvent this lower
bound. The space blow-up of his method is n/(n − t) in the size of the data
file, but it introduces an overhead of nh/(n− 2t) per server, where h is the size
of a fingerprint. If n = 2t + 1, the space blow-up is 2 and the fingerprinting
overhead is nh per server. The additional overhead can be relatively large if the
file is not large. Alon et al. [5] further reduce the fingerprinting overhead by
using a verification structure where each server stores verification information
for data at other servers. They succeed in achieving a blow-up of 2 + ε plus
an overhead of Θ(log nh) per server for n ≥ 2t + 1, with a hidden constant
larger than 1500. Recently, the same authors of [5] developed a scheme that
significantly reduces the hidden constant [6]. The schemes of Krawczyk and of
Alon et al. use one-way hash functions, so they all rely on unproven assumptions.
Hence, the probability of error introduced by their use of hash functions cannot
be quantified. By reducing the blow-up factor, the schemes of both Krawczyk
and Alon et al. lose an important property of schemes based on error correcting
codes: they cannot tolerate computationally unbounded adversaries (for lack of
space, we omit the proof of this fact).

The situation is similar for secret sharing. There is a very large body of lit-
erature [7], and the vast majority of schemes consider models where information
about the secret is not leaked in a computational sense and where faulty partic-



ipants have bounded computational power. If n < 3t, then there is no solution
to the problem that does not have a probability of error. Rabin [2] presented a
scheme that tolerates t < (n−1)/2 faulty participants, but assumes the existence
of a broadcast channel to be used by the participants and the dealer. She gave
solutions for the case of a correct dealer as well as for the case of a faulty dealer,
allowing correct reconstruction of a secret with high probability, without any
cryptographic assumptions and in the presence of a computationally unbounded
adversary. In her scheme, each server stores n different pieces of verification in-
formation, one for each other server, with each piece as large as the share (data)
being verified.

Existing work leaves open three important questions for systems in which
n ≥ 2t+ 1:

1. Is there a distributed storage scheme that doesn’t depend on unproven as-
sumptions, cryptographic or other, and whose space requirements are smaller
than those of error correcting codes?

2. Is there a distributed storage scheme that can tolerate a computationally
unbounded adversary, and whose space requirements are smaller than those
of error correcting codes?

3. Is there a secret sharing scheme that does not depend on unproven assump-
tions and provides information-theoretic secrecy with high probability, but
whose space requirements are smaller than those of Rabin [2]?

We answer all questions in the affirmative by introducing two new techniques
for information verification in the presence of a computationally unbounded
adversary. The first technique, which we call private hashing, allows a server p
to verify information of size s of another server q by using O(hms1/m) private
bits at p and h bits at q. If q changes its information, this will be detected with
probability 1− (1− 1/2m)h (for m = 2, the detection probability is 1− (3/4)h).
Also, p learns nothing about q’s information. Our numbers are to be compared
to at least 2s bits of information at p and at least s bits of information at q that
are needed by Rabin’s scheme, with detection probability 1− (1/2)s.

Our second technique organizes the verification information in such a way
that each server needs to verify only O(log n) others—in other schemes that
tolerate computationally unbounded adversaries, each server verifies the infor-
mation of all others. This technique relies on the fast majority vote algorithm
of Boyer and Moore [8]. (We organize the verification information in such a way
that a modified form of the Boyer-Moore algorithm can be used even though
every server can only verify O(log n) others.)

These techniques allow us to achieve the following results.
For distributed storage, we present a scheme with total space usage 2S +

O(nhm(log n + k)S1/m), where S is the total data size, m is a constant and k
and h are security parameters. The failure probability is no more than (9/4)n(1−
2−m)h+(1/2)k. When we take h ∈ Θ(log n) to reduce the error probability to an
arbitrary constant ε < 1, these numbers guarantee a blow-up less than 2.1 and
space overhead in O((logn)2), which is independent of the data size. In com-
parison to the previously proposed schemes, we reduce the storage requirements



significantly without relying on unproven assumptions, and still tolerate compu-
tationally unbounded adversaries. Our scheme tolerates an adaptive adversary
that can choose which servers to corrupt next based on publicly available in-
formation and the private information of already corrupted servers. Our scheme
does not tolerate a fully adaptive adversary—the difference is that a fully adap-
tive adversary can look at a server’s private data and then decide whether or
not it wants to corrupt it. In practice, the adaptive adversary model is the most
powerful model of interest because we can consider a server compromised as
soon as any of its private data is compromised. As in all previously proposed
schemes, we assume that the clients are correct, but unlike other schemes we
also require that the readers not be subject to Byzantine failures (we discuss
this requirement in Section 2).

For secret sharing, we present a scheme with share size s+O(log2 nms1/m),
for any constant m, where s is the secret size, for the case of a correct dealer.
This scheme relies on private hashing and our modification of the Boyer-Moore
algorithm. This provides a significant improvement over Rabin’s share size of
(3n + 1)s. Our secret sharing schemes are formulated in a model identical to
that of Rabin, namely an adaptive computationally unbounded adversary and an
arbitrarily small probability of error. A fully adaptive adversary does not make
sense for secret sharing; if the adversary could access servers’ private information,
it could defeat any scheme by reconstructing the secret. Even in the case of
a faulty dealer, we can use our hashing procedure for verification in place of
Rabin’s verification procedure and reduce the share size from s+sf(n) to to s+
s1/mf(n)polylog(n) for any constant m (here, f specifies the overhead associated
with the secret-sharing scheme).

2 System Model

Storage System and Secret Sharing. The storage system consists of n servers
s1, . . . , sn and is accessed by external clients. Each server may be correct or
faulty, but the number of faulty servers is at most (n−1)/2. The correct servers
work as intended throughout the period in which the system is accessed. The
faulty servers may fail in any arbitrary way at any time. For example, they may
stop responding to requests, modify the data stored on them, or collude with
other faulty servers to modify the data and attempt to mislead the clients that
access them. In secret sharing, the servers are called participants. The dealer can
be thought of as a client and the participant themselves become clients when
the secret is opened.

Communication and Synchrony. We assume reliable and private communication
channels between the clients and the servers. This is the same model assumed
in Rabin’s paper [2] and is standard in unconditionally secure secret sharing
schemes. Assuming private communication channels is not standard for the se-
cure storage problem, where existing solutions assume authenticated channels.
In practice, private channels can be implemented using encryption and authenti-
cation, but this is not the only way to implement private channels, so assuming



private channels does not imply assuming encrypted channels. We assume a
synchronous system, in other words, that it is possible to detect non-responding
servers. Even though it has not been explicitly stated in previous work, this
assumption is needed to tolerate (n− 1)/2 arbitrary failures.
Clients. In this work, we assume clients that access the storage system are
correct. A writer will correctly follow its protocol and a reader will not divulge
private information that it collects during a read operation. The assumption
of a correct reader is not significantly stronger than that of a correct writer.
In practice, it is not hard to check that a reader will only send read requests
and nothing else to servers. This can be enforced locally by restricting read
requests to use a well defined interface or by requiring them to go through a
trusted proxy. The correct reader assumption only affects the assumptions for
the secure storage system, and, as mentioned in the introduction, is not an issue
in the model for secret sharing.
Adversary. We consider an adaptive adversary that can choose which servers
to corrupt next based on publicly available information and private information
of already corrupted servers. The adversary has unbounded computation power.
We do not assume a fully adaptive adversary that can decide what to do next
based on private information of non-corrupted servers.

3 Efficient Information Checking

In information checking, there are four participants: the dealer, the recipient, the
checker, and the verifier (In Rabin’s scheme, the recipient is called intermediary,
the checker is called the recipient that also functions as a verifier). The dealer
sends verification information V to the checker. Also, the dealer sends data S and
leakage-prevention information r to the recipient. At a later time, the recipient
and the checker pass the information they received to a verifier. Information
checking should satisfy the following two properties:

1. No cheating. If the dealer, checker, and verifier are correct, then the recipient
cannot provide incorrect data to the verifier without being detected with very
high probability.

2. No leakage. If the dealer is correct, then V leaks no information about S.

In our scheme, the verification information V consists of a private hash value
H and a random selection pattern Select. The size of V is considerably smaller
than the size of S. Hashing is done recursively by dividing S into pieces, then
combining the hash values of the pieces to obtain the hash of S. The space
and time complexity of the hashing function depends on a parameter m that
determines the depth of the recursion, or number of levels of hashing. We first
describe the 1-level base case, then we describe the m-level case.

Figure 1 shows the 1-level and m-level procedures used by the dealer to
calculate a single bit of H; to calculate h bits, the same procedure is repeated
h times. The h applications of the algorithm are independent and so are the
random patterns generated for each of the h bits.



Hash(S: bit string of size sm = km, Select: matrix of m× k bits, r: bit)

Hash1(select, S, start, end)
Hash1 = 0
for i = start to end do

if select[i] then
Hash1 = Hash1 ⊕ S[i]

Hashm(S, start, end)
1: if m = 1 then
2: Hashm = Hash1(Select[1], S, start, end)
3: else
4: Hashm = 0
5: sm−1 = (end− start+ 1)/k
6: for i = 0 to k do
7: if Select[m][i] then
8: Hashm = Hashm ⊕Hashm−1(S, start+ ism−1, start+ (i+ 1)sm−1 − 1)

begin
Hash = Hashm(0, size− 1)⊕ r

end

Fig. 1. Calculating 1-bit hash value

To produce a single hash bit in 1-level hashing, we calculate the XOR of a
randomly selected subset of bits of S. In the function Hash1, a contiguous set
of bits of S starting at start and ending at end is hashed. To hash all of S,
we use start = 0 and end = size(S) − 1 and these are the values used when
Hash is called with the number of levels m equal to 1. The function Hash1 has a
parameter Select, which is a uniformly random string of 0’s and 1’s, and is used
to determine which bits of S are XOR-ed together.

After the appropriate bits are XOR-ed together, a random bit r is XOR-ed
with the result in order to prevent leakage; with this addition to the protocol, a
checker that stores a hash bit for S cannot learn anything about S.

In m-level hashing, a string of size km is divided into k strings of size km−1

each. Then (m−1)-level hashing is applied (recursively) to each of the k strings,
and finally 1-level hashing (lines 6–8) to the resulting k bits. In the recursion,
the selection patterns are not independent: the k hashings at level (m − 1) all
use the same (m − 1) × k sub-matrix of the m × k Select matrix. The 1-level
hashing done at level m (lines 6–8) uses the remaining 1 × k sub-matrix of the
Select matrix.

To summarize: in order to hash an s-bit string into h bits, we use a pattern
consisting of mhs1/m bits, and an additional h random bits. The hash can be
calculated in no more than mhs steps. Our final algorithm (Section 4.2) requires
2(log n+k) hashes to be stored by each server. The total overhead for calculating
all of these is thus O(hms1/mn log n), where m is an arbitrary constant and s
the size of the data. If h ∈ Θ(log n), this reduces to O(ms1/mn log2 n).



Lemma 1. Let Select be an (m × k)-bit matrix where each bit is generated
independently uniformly at random. Let r be a bit and S a km-bit string, and
H = Hash(S, Select, r) the hash value of S. For km-bit string S′ 6= S and any
bit r′, the probability (over the random choice of Select) that

Hash(S, Select, r) = Hash(S′, Select, r′) (1)

is at most pm = 1− 2−m.

Proof. Let v = r′ ⊕ r. Then by the definition of the function Hash, (1) holds if
and only if Hashm(S, 0, km − 1)⊕Hashm(S′, 0, km − 1) = v.

Since the same pattern Select is used for S and S′, Hashm(S, 0, km − 1) ⊕
Hashm(S′, 0, km − 1) = Hashm(S ⊕ S′, 0, km − 1).

To prove the statement of the lemma, we prove by induction on m that for
any bit v, the probability that Hashm(S⊕S′, 0, km− 1) 6= v is at most 1− 2−m.

For the base case (m = 1), let C1 be the (non-empty) set of positions on
which S and S′ differ and let A1 be the set of positions that are selected by
Hash1. Then Hash1(S ⊕ S′, 0, km − 1) = v if and only if the parity of |A1 ∩ C1|
is the same as the parity of v. Since A1 is random, it follows that A1 ∩ C1 is
a random subset of C1. Thus the probability that |A1 ∩ C1| is even (or odd) is
exactly 1/2. In other words, in the base case the probability that (1) holds is
exactly 1/2.

For the induction step, consider the loop in lines 6–8. The function Hashm−1

is applied to k groups S1, . . . , Sk of bits of S, resulting in k bits, some of which
are then XOR-ed together. The choice of which among the k bits will be XOR-ed
together is determined by the k-bit vector Select[m].

Let Cm = {i | Hashm−1(Si) 6= Hashm−1(S′i)}.(We are abusing the notation
slightly here by writing Si as a parameter of Hashm−1 instead of specifying Si
as a subset of S using start and end.) Since S 6= S′, there is an i∗ such that
Si∗ 6= S′i∗ . The probability that Cm is nonempty is at least the probability that
i∗ ∈ Cm. By the induction hypothesis, Hashm−1(Si∗) 6= Hashm−1(S′i∗) with
probability at most 1− 2−(m−1) (note that Hashm−1(Si∗) 6= Hashm−1(S′i∗) if an
only if Hashm(S ⊕ S′, 0, km − 1) 6= 0).

In fact, if Cm contains more than one element, this probability will be even
smaller, but in any case it is at most 1 − 2−(m−1). Call this probability pm−1.
Let Am = {i | Select[m][i] = 1}, that is, the set of level m − 1 hash bits that
are selected by Hashm to calculate the hash bit in line 7. Let Jm = Cm ∩ Am.
Clearly, Hashm(S ⊕ S′, 0, km − 1) =

⊕
i∈Am (Hashm−1(Si)⊕Hashm−1(S′i)) =

|Jm| mod 2.
The above expression is equal to v if and only if the parity of |Jm| is. Since

Am is random, it follows that Jm = Am ∩ Cm is a random subset of Cm. Thus
the probability that the parity of |Jm| is equal to v is exactly 1/2 if Cm is
nonempty. If Cm is empty, then the |Jm| = 0. Thus for v = 0, the probability
that |Jm| mod 2 = v is (1/2) · pm−1 + 1 · (1 − pm−1). For v = 1, on the other
hand, this probability is (1/2) · pm−1 + 0 · (1 − pm−1). In both cases, |Jm| is of
equal parity as v with probability pm ≤ pm−1/2+(1−pm−1). This is maximized



for pm−1 = 1 − 2−(m−1), which gives pm ≤ 1 − 2−m and proves the induction
step.

Lemma 2. (No cheating.) When using level-m private hashing, if the dealer,
checker and verifier are correct, then the recipient cannot provide incorrect data
to the verifier without being detected with probability 1− (1− 2−m)h, where h is
the length of the verification information.

Proof. Follows from the description of information checking and Lemma 1 by
noting that the h hash bits are independent.

Lemma 3. (No leakage.) In private hashing, assuming the dealer is correct, the
verification information leaks no information about S.

Proof. The matrix Select is generated randomly, independently of S, and H =
Hash(S, Select, r) is an XOR with the (uniform and unknown to the checker)
random string r, and thus random and independent of S as well.

4 Storage and Recovery

Distributed Storage When storing the data, a server stores the data pieces com-
puted using IDA [9] with blow-up factor equal to 2. The IDA scheme assumes
that data cannot be tampered with, so we need to add extra verification infor-
mation to detect pieces that have been tampered with and recover the original
data. The verification information kept at each server verifies the data as well
as the verification information kept at other servers. To retrieve the data, the
reader collects all the information (data and verification information) from all
the servers. Then, the reader executes an algorithm that enables it to identify
(with high probability) a majority of servers whose information has not been
tampered with. A basic operation is for the reader to check whether the verifica-
tion information obtained from one server correctly verifies the information it’s
supposed to verify. If the verification information has not been tampered with,
then with high probability the verified information is correct. The details of the
particular algorithm and verification checks are given in subsequent sections.

Secret Sharing We only present the case in which the dealer is correct. In the
sharing phase, the dealer computes the shares using [1] and sends them to the
participants; In addition the dealer send the participants verification information
for the shares of other participants. In the reconstruction phase, every participant
sends all the information it has to all other participants. Then, each participant
executes an algorithm that enables it to identify (with high probability) a ma-
jority of servers whose information has not been tampered with. This will enable
all correct participants to reconstruct the secret.

We start by presenting a scheme in which every server verifies every other
server. Then we present a scheme in which every server verifies only 2(logn+ k)
other servers, where k is a security parameter. This will allow us to achieve the
results listed in the introduction.



4.1 Full verification

In this section we describe a verification scheme in which each server contains
information to verify each other server. In this scheme, the servers are arranged
on a line from left to right.

0: for i = 1 to n do
1: V [i, 0] = IDA data piece
2: for i = 2 to n do
3: for j = i− 1 downto 1 do
4: V [i, j] = H(V [j], R[j])
5: R[j, i] = the random bits computed in line 4 to prevent leakage
6: for i = n− 1 downto 2 do
7: for j = i+ 1 to n do
8: V [i, j] = H(V [j])

Fig. 2. Full Verification

We can divide the verification information at a given server into two types.
The left-verification information of a server p is the verification information that
p keeps for servers to its left. The right-verification information of a server p is the
verification information that p keeps for servers to its right. The left-verification
information of a server pr verifies all the left-verification information of a server
pl to its left. The right-verification information of a server pl verifies all the
verification information (both left- and right-) of a server pr to its right. We
say that the information on two servers is consistent if each of the two servers
verifies the information of the other server. We will abuse notation and say that
the servers are consistent and they are related by the consistency relation. The
algorithm for calculating the verification information is shown in Figure 2. In the
algorithm,V [i, j] is i’s verification information for j and R[i, j] are the random
bits kept at j to prevent leakage to i. In the algorithm, V [j] refers to all of j’s
verification information at the point it is used in the computation. Similarly we
define R[j]. In line 4, V [j] is j’s left verification information because at that
point only j’s left verification information has been computed. In line 8, V [j] is
j’s total verification information.

Majority elements. A simple approach to recovery would have a reader check
that the server’s information is consistent with the information of a majority of
servers. This will guarantee that all correct servers will pass the check and their
information can be used in recovery and also that no information that has been
tampered with will be used. Unfortunately, this simple approach will lead to a
quadratic number of verifications at recovery time (for now, we will ignore the
actual cost of checking whether two servers are consistent). Our goal is to reduce
the number of consistency checks to 2n. We will first find a server pc whose in-
formation is guaranteed to be correct and then find all the correct servers among



the subset of servers whose information is verified by pc. To achieve a linear num-
ber of checks, we modify the well-known Boyer-Moore linear-time algorithm [8]
for finding a majority element in an array. The linear-time majority element
algorithm uses only equality tests. In our setting, we do not have an equality
test, but we can check if the information on two servers mutually verifies each
other. The consistency relation does not have the same transitivity properties
as equality and so we modify the majority algorithm so that the transitivity
properties of consistency are sufficient.

Transitivity of verification. Here we prove the necessary transitivity properties
of the verification information.

Lemma 4 (Correctness). Let p, q be two consistent servers such that p ap-
pears before q on the verification line and the information of p is correct. All the
information at q is then correct with high probability.

Proof. Since, p appears to the left of q, it follows that p verifies all the information
of q. Since, p is correct, by Lemma 2, if q provides incorrect information it will
be verified by p with probability at most (1− 2−m)h, where h is the size of the
hash.

Lemma 5 (Right Transitivity). Let p1, . . . , pu be a sequence of servers that
appear in that order on the verification line and such that pi and pi+1 are con-
sistent, for all 1 ≤ i ≤ u− 1. If p1 is correct, then all the information on servers
pu, is correct with probability 1− (u− 1)(1− 2−m)h.

Proof. If all consecutive pairs of servers are consistent and pu is incorrect, then
one of the verifications along the line (say pi by pi−1) must have failed. For each
i, by Lemma 4, the verification of i by i − 1 fails with probability (1 − 2−m)h.
Thus the probability that there is a failure in at least one of the u−1 verifications
is (u− 1)(1− 2−m)h.

Lemma 6 (Left Transitivity). Let p1, . . . , pu be a sequence of servers that
appear in that order on the verification line and such that pi and pi+1 are con-
sistent, 1 ≤ i ≤ u − 1. If pu is correct then all the left-verification information
on servers p1 is correct with probability 1− (u− 1)(1− 2−m)h.

Proof. The proof is similar to the proof of Lemma 5 and is omitted.

In what follows, we assume that the security parameter h is chosen so that
the probability of failure is small enough. We will later calculate a value of h
that works.

Lemmas 5 and 6 imply that if pj is correct for some 1 ≤ j ≤ u, then all the
data on servers p1, . . . , pu is correct with high probability.

The lemmas we have proved enable us to find a server whose data and veri-
fication information is correct using the algorithm shown in Figure 3.

The algorithm is almost identical to that of Boyer and Moore [8], but with
one important difference. In Boyer and Moore’s algorithm, there is no need for



1: count := 0
2: for i = 1 to n do
3: if count = 0 then
4: correct := i
5: count := 1
6: else
7: if pi and pcorrect are consistent then
8: correct := i
9: count := count+ 1
10: else
11: count := count− 1

Fig. 3. Finding a correct server

0: for i = 1 to n do
1: V [i, 0] = IDA data piece
2: for i = 2 to n do
3: for j = i− 1 downto max(1, i− `) do
4: V [i, j] = H(V [j], R[j])
5: R[j, i] = the random bits computed in line 4

to prevent leakage
6: for i = n− 1 downto 2 do
7: for j = i+ 1 to min(i+ `, n) do
8: V [i, j] = H(V [j])

Fig. 4. Verification on an `-Path

the assignment on line 8, whereas in our algorithm, the assignment is crucial
to guarantee that the transitivity lemmas can be used. The following theorem
(whose proof is omitted for lack of space) shows that the algorithm in Figure 3
will find a correct server (a server whose information has not been tampered
with) if a majority of the servers is correct.

Theorem 1. If a majority of the servers is correct, then with high probability
the information of server pcorrect at the end of the main loop of algorithm of
Figure 3 is not tampered with.

The algorithm allows us to find a server prightmost with correct data. To find
all such servers (this includes all correct ones), we find all servers consistent
with prightmost (note that no server to the right of prightmost is correct). Finding
all correct servers in a set of n thus takes no more than 2n consistency checks,
therefore the probability that the servers identified as correct really are so is at
least 1− 2n(1− 2−m)h.

4.2 Efficient Verification

We present a scheme that relies on the Boyer-Moore majority algorithm, with
each server verifying only a small subset of other servers, and achieves very good



performance. The scheme guarantees with high probability that the set of correct
servers and other servers whose data is not corrupted is identified. It requires
2(log(n) + k) hash values of size h per server to provide a probability of failure
at most (9/4)n(1− 2−m)h + 2−k.

The verification graph. The verification graph we use is not complete. In the
verification algorithm, the servers are arranged in a line s1, s2, . . . , sn and si
and sj verify each other by if and only if |i − j| ≤ `. The resulting graph is
called the `-th power of a path on n vertices and is denoted by P `n. We calculate
the verification information as shown in Figure 4, where ` is a parameter that
determines how many servers each server verifies.

Since each server is verified by only ` � t other servers, an adversary could
corrupt all of them and make the now isolated server useless even if it is correct.
To prevent this, the writer hides the ordering of the servers in the line by giving
each of them a random, unique and private ID. The IDs are used by the reader
during reconstruction. However, they are not public information prior to the
reconstruction phase and so are unknown to the adversary, who can only learn
a server’s ID after corrupting the server. Thus the adversary cannot choose a
particular ID and then corrupt the server with that ID. So the corrupted server’s
IDs are selected independently at random. The algorithm must take into account
the situations in which corrupted servers report incorrect IDs.

Since at most t < n/2 servers are ever corrupted, the probability that a
given server is faulty is less than 1/2, regardless of whether its neighbors in
the line are corrupted or not. Thus, given i ∈ {1, 2, . . . , n − `}, the probability
that ` servers immediately following the i-th one are faulty is less than 2−`. If
we choose ` = 2(log n + k), then the probability that no server is followed by
` faulty servers is bounded above by 1/2k. It follows that with probability at
least 1−1/2k, in P `, the set of all correct servers forms a connected component.
In what follows we assume without referring to probability (except, of course,
when computing the probability of success of the algorithm) that there is no
contiguous subsequence of faulty servers of length more than `.

Boyer-Moore Majority for Path Powers. The algorithm is based on the Boyer-
Moore majority procedure, but some modifications are necessary to make it run
with high probability. First, in Figure 5 we show the initialization.

Since the corrupted servers can advertise themselves under fake names, it
may happen that several servers give the same value as their ID. Clearly, at
most one of these is correct. During initialization, the servers are sorted into
buckets, according to the IDs they report. Each bucket is maintained in the
form of a linked list. The (arbitrary) order of servers in each bucket induces,
together with the order on the buckets (according to the IDs reported by the
servers), an order on the set of servers. It is this order that the algorithm uses
to examine the servers one by one.

We assume throughout that there is no contiguous subsequence of more than
` buckets containing only faulty servers. This means that even though perhaps
we have examined more than ` servers between one that reports i as ID and



1: for i := 1 to n: // (1–2): Initialize buckets
2: list[i] := null
3: for i := 1 to n: // (3–7): Sort servers into buckets,
4: if list[server[i].ID] = null // thus creating linked lists.
5: last[server[i].ID] := server[i]
6: server[i].next := list[server[i].ID]
7: list[server[i].ID] := server[i]
8: i := 1 // (8–11): Find the first nonempty bucket.
9: while (list[i] = null) do
10: i := i+ 1
11 start.next := list[i]; startindex := i
12: i := n // (12–15): Find the last nonempty bucket.
13: while (list[i] = null) do
14: i := i− 1
15: endindex := i
16: for i := startindex to endindex− 1// (16–22) Initialize the remaining
17 if (list[i] 6= null) // next pointers.
18: j := i+ 1
19: while (j ≤ n and list[j] = null) do
20: j := j + 1
21: if (j > n) break
22: last[i].next := list[j]

Fig. 5. Finding a correct server: initialization

one that reports i + j as ID, as long as j < `, we expect the two servers to
have verification information for each other. However, it may still happen that
the basic algorithm (Figure 3) tries to cross-verify a pair of servers not adjacent
in the verification graph. We argue that in such a case, we can drop some of
the servers, backtrack slightly and continue the algorithm, and still with high
probability find a correct server. The algorithm is presented in Figure 6.

Underlying the implementation is the notion of a consistent component. Dur-
ing the execution of the algorithm, whenever the variable count is positive, the
algorithm knows a set of at least count consistent servers that induce a connected
subgraph of the verification graph. The algorithm maintains several pieces of in-
formation about the current consistent component: the variable count stores the
number of consistent servers in the component; correct stores the head of the
consistent component (the latest server added); firstnon and lastnon, respec-
tively, point at the first and last element (as ordered by the position in the path)
known not to belong to the component; the next pointers link the servers known
to be inconsistent with the component into a list.

The main actions the algorithm performs are the following: (1) Whenever
count reaches 0, a new consistent component is started. (2) Whenever a server p
is found to be inconsistent with the head of a component, the last non-belonging
server (lastnon) is linked to p and lastnon updated to point to p. (3) If the head
of the component cannot be checked for consistency against the current server



23: i := start; correct := start.next; count := 0; firstnon := null
24: while (i 6= null) do
25: i := i.next
26: if (|i.ID−correct.ID| > `)
27: count := 0
28: i := firstnon
29: firstnon := null
30: correct := i
31: if count = 0 then
32: correct := i
33: count := 1
34: else
35: if i and correct are consistent
36: count := count+ 1
37: correct := i
38: else
39: count := count− 1
40: if (firstnon = null)
41: firstnon := i
42: lastnon := i
43: else
44: lastnon.next := i
45: lastnon := i

Fig. 6. Finding a correct server

under consideration, the algorithm concludes that the whole component must
be faulty (as justified below) and restart the algorithm from firstnon.

Note that in the case where more than one server uses the same ID, if one
of them is found consistent with the current component, the others servers will
be found inconsistent and will consequently be ignored (unless the component
is subsequently discarded).

We show (using an amortization argument) that the total number of consis-
tency checks is linear (with a small hidden constant) in the number of servers.

Theorem 2. If a majority of the servers is correct, then, with high probability,
the information of server pcorrect at the end of the main loop of algorithm of
Figure 6 is not tampered with.

Storage Overhead. Since we use patterns to hash strings consisting of, among
other things, other patterns, the size of the pattern required is not immediately
obvious. According to the rules for storing verification information, each server
will store its share of data (size s), the pattern (size p), the 2(log n+ k) hashes
(each of size h), and the 2(log n + k) random strings (each of size h) used for
the data hashed by verifying servers. Thus the total size of data that needs to
be hashed by verifying servers is s + 4h(log n + k) + p. Given a string of size
s to be hashed into a string of size h, the pattern is of size hs1/m. Hence the
size of the pattern p must satisfy the inequality p ≥ h(s+ p+ 4h(log n+ k)1/m.



Under the very reasonable assumption that
√
s ≥ 4h + 6, it is enough that

p = hs1/m(log n+ k)1/m (we omit the derivation for lack of space).

Running Time. It may not be obvious that the removal of a component and
another invocation of the algorithm (and, recursively, possibly more than one)
can be performed in a total linear number of consistency verifications.

Theorem 3. The total number of consistency checks made in the algorithm of
Figure 6 before a correct server is found is at most 5n/4.

In addition to these 5n/4 checks, another n may be necessary to find all
correct servers. Each consistency check takes time proportional to h times the
size of the data stored at a server.

Failure Probability. The algorithm could fail in one of two ways: either one of the
consistency checks fails with a false positive, or there is a contiguous sequence
of corrupted servers. The first happens with probability (1 − 2−m)h for each
check, and the second with probability (1/2)k. Since there are at most (9/4)n
consistency checks, the total probability of failure is no more than (9/4)n(1 −
2−m)h + (1/2)k. With h ∈ Θ(log n), this probability can be made an arbitrarily
small constant.
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