
Erratum: Efficient Verification for Provably
Secure Storage and Secret Sharing in Systems

Where Half the Servers Are Faulty

Rida A. Bazzi ? and Goran Konjevod ??

Computer Science and Engineering Department
Arizona State University
Tempe, AZ 85287-8809
{bazzi,goran}@asu.edu

1 Introduction

The protocol presented in the paper that appears in the DISC 2004 proceedings
relies on a transitivity lemma that does not necessarily hold. The lemma states
that if p is a correct server, and q and r are two other servers such that p verifies
q and q verifies r, then r’s data should be correct. Serge Fehr pointed to us
that this does not hold if q and r are incorrect and collude. In fact, while q’s
verification will be correct with high probability, if q and r are corrupted, then
q can give its own data and verification information to r beforehand so that r
can calculate different data that is guaranteed to be verified by q’s verification
information.

Also, Ronald Cramer pointed out that our adversary model is not the strongest
for secret sharing (it is the strongest adversary for secure storage though). In
the secret sharing model, one can distinguish between rushing and non-rushing
adversaries [1]. A rushing adversary may wait for the correct players to show
their shares before showing the shares of the faulty players. It is not clear to us
that Rabin [2] makes this distinction between the model we use and the stronger
model of [1], but the protocol that she presents clearly tolerates the stronger
model as shown in [1]. In [1], Cramer et al. prove a lower bound for the rush-
ing adversary model which basically states that in any one-round solution that
tolerates a rushing adversary, each server must verify Ω(n) other servers. The
rushing adversary model is not relevant to the secure storage problem because
all servers send their data over private channels to the reader and faulty servers
cannot see the data and verification information of correct servers.

In this erratum, we change the transitivity lemma and the protocol for re-
covering the file. The new protocol solves all the questions that were posed in
the paper. Its space requirement is identical to that of the protocol in the pro-
ceedings, but its running time is slightly higher. It is important to note that the

? Research supported in part by the National Science Foundation grants CCR-9972219
and CCR-9876952.

?? Research supported in part by the National Science Foundation grant CCR-0209138.



main ingredients of the solution did not change, but our solution does not use
the fast majority algorithm.

On the other hand, we also have an extension for secret sharing that tolerates
a rushing adversary. This extended solution requires multiple rounds, but it
overcomes the lower bound of [1]. We do not describe this extended solution in
this erratum.

2 Full Information Verification

We first modify how full verification is done. Instead of calculating right and
left verification information that are tied together (right verification information
verifies left verification information) we calculate right verification information
and left verification information independently1.

0: for i = 1 to n do
1: V [i, 0] = Share of Secret
2: for i = n− 1 downto 2 do
3: for j = i+ 1 to n do
4: V [i, j] = H(V [j], R[j])
5: R[j, i] = the random bits computed in line 4 to prevent leakage

Fig. 1. Full Right Verification

The right-verification information of a server p is verification information
that p keeps for servers to its right. The right-verification information of a server
pl verifies all the verification information of a server pr to its right. We say that
p verifies q if the verification information of p verifies the information at q. The
algorithm for calculating the verification information is shown in Figure 1. In the
algorithm,V [i, j] is i’s verification information for j and R[i, j] are the random
bits kept at j to prevent leakage to i. In the algorithm, V [j] refers to all of j’s
verification information at the point it is used in the computation. Similarly we
define R[j].

We define left verification information in a similar way. The only difference
is that it is calculated from right to left.

2.1 Simple Reconstruction

In Rabin’s [2] solution, every server verifies every other server. So, a simple
reconstruction scheme will keep only those shares that are verified by a majority
of servers (and therefore by a correct server). This guarantees that all correct
servers will pass the check and their information can be used in recovery and also
1 We could have kept the full verification as it appears in the proceedings version, but

we wanted to emphasize that they need not be linked together



that no information that has been tampered with will be used. Unfortunately,
this simple approach will lead to a quadratic number of verifications at recovery
time (for now, we will ignore the actual cost of checking whether a server verifies
another server). Our goal is to reduce the number of verification checks to O(nl),
where l ∈ o(n).

2.2 Transitivity of verification.

Here we prove the necessary transitivity properties.

Lemma 1 (Correctness). Let p, q be two consistent servers such that p ap-
pears before q on the verification line and the information of p is correct. All the
information at q is then correct with high probability.

Proof. Since, p appears to the left of q, it follows that p verifies all the information
of q. Since, p is correct, by Lemma 2, if q provides incorrect information it will
be verified by p with probability at most (1− 2−m)h, where h is the size of the
hash.

In what follows, we assume that the security parameter h is chosen so that
the probability of failure is small enough. We will later calculate a value of h
that works.

Lemma 2 (Transitivity). Let p, q, and r be three servers that appear in that
order on the verification line. If p and r are correct and p verifies q, then q
verifies r with probability at least 1− (1− 2−m)h.

Proof. q would not verify r if its information is incorrect. But the information
of q is incorrect with probability at most (1− 2−m)h.

It should be clear that these lemmas do not rely on the direction of verification
and that one can prove two similar lemmas for left verification. We omit the
details.

2.3 The verification graph

The verification graph we use is not complete. In the verification algorithm, the
servers are arranged in a line s1, s2, . . . , sn and si verifies sj , j > i if and only
if j − i ≤ `. The resulting graph is called the `-th power of a directed path on
n vertices and is denoted by P `n. We calculate the right verification information
as shown in Figure 2. We calculate the left verification information in a similar
way.

Since each server is verified by at most ` � t other servers , an adversary
could corrupt all of the servers that verify a given server which makes the infor-
mation of the now-isolated server useless even if it is correct. To prevent this, the
distribution phase hides the ordering of the servers in the line by giving each of
them a random, unique and private ID. The IDs are used during reconstruction.



0: for i = 1 to n do
1: V [i, 0] = IDA data piece
2: for i = n− 1 downto 2 do
3: for j = i+ 1 to min(i+ `, n) do
4: V [i, j] = H(V [j], R[j])
5: R[j, i] = the random bits computed in line 4 to prevent leakage

Fig. 2. Right verification on an `-path

However, they are not public information prior to the reconstruction phase and
so are unknown to the adversary, who can only learn a server’s ID after cor-
rupting the server. Thus the adversary cannot choose a particular ID and then
corrupt the server with that ID. So the corrupted server’s IDs are selected inde-
pendently at random. The algorithm must also take into account the situations
in which corrupted servers report incorrect IDs.

Since at most t < n/2 servers are ever corrupted, the probability that a given
server is faulty is less than 1/2, regardless of whether its neighbors in the line
are corrupted or not. Thus, given i ∈ {1, 2, . . . , n − `}, the probability that `
servers immediately following server i are faulty is less than 2−`. If we choose
` = log(n)+k, then the probability that no server is followed by ` faulty servers is
bounded above by 1/2k. It follows that with probability at least 1−1/2k, in P `,
the set of all correct servers forms a connected component. In what follows we
assume without referring to probability (except, of course, when computing the
probability of success of the algorithm) that there is no contiguous subsequence
of faulty servers of length more than `.

3 Finding the Correct Servers

For a server i, we define the following sets.

– Right(i): the set of servers that are verified by server i.
– Left(i): the set of servers that verify server i.
– Left Consistent(i): the set of servers that verify server i and whose veri-

fication information correctly verify server i. Servers in Left Consistent(i)
are to the left of i.

Figure 3 presents an algorithm that finds servers consistent with a given
server. The algorithm has one main loop. In each iteration of the loop, a new
server is added if it is verified by all servers already in the component that
are adjacent to it (in the verification graph). The claim is that at the end of
the loop, if pc is correct, then R correct component must contain all correct
servers to the right of pc and the data and verification information of all servers
in R correct component have not been tampered with. We prove the following
theorem.



correct component : doubly linked list of servers
correct component = NULL
add pc to component. for i = pc to n do

if Left(i) ∩R correct component ⊆ Left Consistent(i) then
add i to R correct component
count = count+ 

Fig. 3. Finding a right component consistent with pc

Theorem 1. If pc is correct, then at the end of iteration i R correct component
contains all correct servers in the interval [pc, i]. Also, the data and verification
information of servers in R correct component is correct.

Proof. The proof is by induction on i.
Base case: i = pc and R correct component has only pc which is the only

correct server in [pc, pc].
Induction Step: Consider the R correct component at the end of iteration i.

We need to show that if server i is added to R correct component, then its data
and verification information are correct. Also, we need to show that if server i is
correct, then it will be added to R correct component in iteration i. There are
two cases to consider.

1. i − pc ≤ l. It follows that all elements in R correct component are verified
by the correct server pc and that all the data and verification information
of servers in R correct component are correct. In particular, the data and
verification information of server i are correct if i is added to the component.
If i is correct, then it will be added to the component because the verification
information of all servers in R correct component is correct and server i will
be correctly verified by the information of servers in R correct component.

2. i − pc > l. By assumption, one of the l left neighbors of i, say q, is correct.
By induction, q must be in R correct component.
– If i is not in R correct component but is nonetheless added to the

the component, then i must be correctly verified by q because q is in
Left(i)∩R correct component. It follows that all the data and verifica-
tion information of i is correct.

– if i is correct, then i must be added to R correct component. In fact, all
the data and verification information of servers in R correct component
are correct and therefore q will be verified by all servers in Left(i) ∩
R correct component.

Similarly, we can have an algorithm to find a left component of servers to
the left of pc and that are consistent with it (L correct component). By an
analogous proof, we can show that at the end of the execution, if pc is correct,
then the L correct component contains all correct servers to the left of pc. So, if
pc is correct, the union of the L correct component and R correct component
contains all correct servers.



4 Recovering the File

The results of the previous section provide a way to find a majority of servers
whose data is correct if pc is correct. To recover the file, the reader finds n
components (left and right), one for each server in the system. The components
of correct servers (whose starting server is correct) contain all correct servers and
other servers whose data is correct. So, the file recovered using the components
of the correct servers must be identical. To recover the file, the reader recovers
the file n times, once for each component, and finds the file that is recovered a
majority of times; this is the correct file.

In the secret sharing problem, each player recovers the secret independently
of the others, so it can recover the secret using its own component. If the player
is correct, its component will result in the correct secret. If the player is faulty,
we have no constraints on the secret it recovers.

5 Space Requirements

Every servers verifies lg(n) + k other servers and the verification structure is
identical to that of the protocol in the Proceedings paper. Thus, the space re-
quirements are identical to those of the protocol in the Proceedings. It should
be noted that reducing the space requirement is the main goal of the work, so
we still achieve our claims with this modified solution.

6 Running Time

In finding the correct components, it takes lg(n) + k verifications to decide if a
server is to be added to the component. In contrast, in the algorithm that appears
in the Proceedings, it takes only one verification to decide if a server should be
added to a component (the components in this erratum are not identical to the
components in the protocol in the Proceedings). So, this introduces a factor of
lg(n) + k to the running time of that algorithm. Also, the component algorithm
should be executed n times in the worst case, which introduces another factor of
n. Thus, the running time of the algorithm is O(n lg(n) times slower than that
presented in the proceedings.

7 Acknowledgments

We would like to thank Serge Fehr for pointing out that our earlier solution
has a serious error. We would like to thank Ronald Cramer for pointing out the
distinction between rushing and non-rushing adversaries. Ronald Cramer also
pointed out that we could replace our private hashing function with authentica-
tion codes (A-codes). As it turns out, our private hashing function is a special
case of A-codes and there are A-codes in the literature with smaller space re-
quirements than our private hashing function; using such codes in our solution



would further reduce the memory requirements of our solution. One advantage
of our hashing function is that hashing requires s XOR operations to execute,
where s is the size of the file. It is not clear to us if there are other A-codes in the
literature that can be computed as efficiently and have small space requirements.

References

1. Cramer, R., Damgaard, I., Fehr, S.: On the cost of reconstructing a secret, or vss
with optimal reconstruction phase. In: Proceedings of the 21st Annual International
Cryptology Conference on Advances in Cryptology, Springer-Verlag (2001) 503–523

2. Rabin, T.: Robust sharing of secrets when the dealer is honest or cheating. Journal
of the ACM 41 (1994) 1089–1109


