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Abstract—Bursty continuous media streams with periodic
playout deadlines (e.g., VBR-encoded video) are expected to
account for a large portion of the traffic in the future Internet.
By prefetching parts of ongoing streams into client buffers
these bursty streams can be more efficiently accommodated in
packet-switched networks. In this paper we develop a modular
algorithm-theoretic framework for the fair and efficient trans-
mission of continuous media over a bottleneck link. We divide
the problem into the two subproblems of (i) assuring fairness,
and (ii) efficiently utilizing the available link capacity. We de-
velop and analyze algorithm modules for these two subproblems.
Specifically, we devise a bin packing algorithm for subproblem
(i), and a “layered prefetching” algorithm for subproblem (ii).
Our simulation results indicate that the combination of these two
algorithm modules compares favorably with existing monolithic
solutions. This demonstrates the competitiveness of the decoupled
modular algorithm framework, which provides a foundation
for the development of refined algorithms for fair and efficient
prefetching.

Index Terms—Client buffer, continuous media, fairness, play-
back starvation, prefetching, prerecorded media, video streaming.

I. INTRODUCTION

CONTINUOUS media are expected to account for a large
portion of the traffic in the Internet of the future and

next generation wireless systems. These media have a number
of characteristics that make their transport over networks
very challenging, especially when the media are streamed in
real-time. An alternative to real-time streaming is the download
of the entire media file before the commencement of playback.
This download significantly simplifies the network transport,
but results in long response times to user requests, which
are unattractive for many usage scenarios. We focus in this
paper on the real-time streaming with minimal response times
(start-up delays). Continuous media are typically characterized
by periodic playout deadlines. For instance, a new video frame
has to be delivered and displayed every 33 msec in NTSC
video and every 40 msec in PAL video to ensure continuous
playback. A frame that is not delivered in time is useless for
the media playback and results in interruptions of the playback.
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For the network transport the continuous media are typically
compressed (encoded) to reduce their bit rates. The efficient en-
coders, especially for video, produce typically highly variable
frame sizes, with ratios of the largest frame size to the average
frame size for a given video stream in the range between 8
and 15 and coefficients of variation (defined as the ratio of
standard deviation to mean) in the range from 0.8 to 1.3 [1], [2].
This highly variable traffic makes efficient real-time network
transport very challenging since allocating network resources
based on the largest frame size of a stream would result in low
network utilization for most of the time. Allocating resources
based on the average bit rates, on the other hand, could result
in frequent playout deadline misses as the larger frames could
not be delivered in time. An additional characteristic of a large
portion of the continuous media delivered over networks is that
it is prerecorded, e.g., stored video clips, such as news or music
video clips, or full length videos, such as movies or lectures are
streamed, as opposed to live media streams, e.g., the feed from
a conference or sporting event.

An important characteristic of many of the user devices
(clients) used for the media playback is that they have storage
space. This storage space—in conjunction with the fact that a
large portion of the media are prerecorded—can be exploited
to prefetch parts of an ongoing media stream. This prefetching,
which is often also referred to as work-ahead, can be used
to smooth out some of the variabilities in the media stream
and to relax the real-time constraints. The prefetching builds
up prefetched reserves in the clients which help in ensuring
uninterrupted playback. The prefetching (smoothing) schemes
studied in the literature fall into two main categories: noncol-
laborative prefetching schemes and collaborative prefetching
schemes.

Non-collaborative prefetching schemes, see for instance
[3]–[16], smooth an individual stream by pre-computing
(off-line) a transmission schedule that achieves a certain op-
timality criterion (e.g., minimize peak rate or rate variability
subject to client buffer capacity). The streams are then trans-
mitted according to the individually pre-computed transmission
schedules. Collaborative prefetching schemes [17]–[20], on the
other hand, determine the transmission schedule of a stream
on-line as a function of all the other ongoing streams. For
a single bottleneck link, this on-line collaboration has been
demonstrated to be more efficient, i.e., achieves smaller play-
back starvation probabilities for a given streaming load, than the
statistical multiplexing of streams that are optimally smoothed
using a noncollaborative prefetching scheme [18]. We also note
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that there are transmission schemes which collaborate only at
the commencement of a video stream, e.g., the schemes that
align the streams such that the large intracoded frames of the
MPEG encoded videos do not collude [21].

As discussed in more detail in the review of related work in
Section I-A, most studies on collaborative prefetching in the
literature consider the Join-the-Shortest-Queue (JSQ) scheme.
The JSQ scheme is designed to achieve efficiency by always
transmitting the next video frame for the client that has currently
the smallest number of prefetched frames in its buffer. While
efficiency, i.e., achieving a high utilization of the network re-
sources and supporting a large number of simultaneous media
streams with small playback starvation probabilities, is impor-
tant for media streaming, so is the fair sharing of these resources
among the supported streams. Without fairness, the supported
streams may suffer significantly different playback starvation
probabilities. Fairness in collaborative prefetching has received
relatively little interest so far. The only study in this direction
that we are aware of is the work by Antoniou and Stavrakakis
[20], who introduced the deadline credit (DC) prefetch scheme.
In the DC scheme the next frame is always transmitted to the
client that has currently the smallest priority index, which counts
the current number of prefetched frames in a client’s buffer
minus the number of playback starvations suffered by the client
in the past. By considering the “history” of playback starva-
tions at the individual clients, the DC scheme can ensure fairness
among the ongoing streams.

In this paper we re-examine the problem of fair and efficient
collaborative prefetching of continuous media over a single
bottleneck link. The single bottleneck link scenario is a funda-
mental problem in multimedia networking that arises in many
settings, e.g., in the on-demand streaming of video over a cable
plant [18], [22] and the periodic broadcasting of video in a
near video on demand system [19], [23]. In addition, a solid
understanding of the prefetching over a single bottleneck link
is valuable when considering multihop prefetching. Also, the
policy for prefetching over a wired bottleneck link is typically
a module of the protocols for streaming video in a wireless
networks, e.g., from a base station to wireless clients [24],
[25].

In this paper we develop and analyze a modular algorithmic
framework for collaborative prefetching. In contrast to the DC
scheme, where both fairness and efficiency are addressed by a
single scheduling algorithm which considers a single priority
index, we break the problem into the two subproblems of (i)
ensuring fairness by avoiding continuous starvation of a client,
and (ii) maximizing the bandwidth utilization. This decoupled,
modular algorithm framework—which our complexity analysis
and numerical results demonstrate to be competitive as it com-
pares favorably with the existing monolithic approaches—has
the advantage that different algorithms can be used for the two
subproblems. Thus, our modular structure facilitates the future
development of advanced collaborative prefetching schemes by
allowing for the independent development and optimization of
algorithm families for the two subproblems of achieving fair-
ness and efficiency. Such future algorithm developments may,
for instance, introduce different service classes and thus gener-
alize the notion of fairness, where all clients receive the same

grade of service. On the efficiency side, future algorithm devel-
opments may, for instance, take the relevance of the video data
for the perceived video quality into consideration and strive to
achieve high efficiency in terms of the perceived video quality.

This paper is organized as follows. In the following subsection
we review the related work on collaborative prefetching. In
Section II, we describe the problem set-up and introduce the
notations used in the modeling of the collaborative prefetching.
In Section III, we address the subproblem (i) of ensuring fairness.
We develop and analyze a BIN-PACKING-ROUND algorithm
which computes the minimum number of slots needed to
schedule at least one frame for each stream with the minimum
number of transmitted frames so far. Next, in Section IV, we
develop and analyze the LAYERED-PREFETCHING-ROUND
algorithm which maximizes the number of additional frames
to be transmitted (prefetched) in the residual bandwidths of
the minimum number of time slots found in Section III. In
Section V, we conduct simulations to evaluate the developed
modular solution to the problem of fair and efficient continuous
media prefetching. Our simulation results indicate that the
combination of our algorithm modules compares favorably
with the JSQ and DC schemes. Our approach reduces the
playout starvation probability approximately by a factor of
two compared to the JSQ scheme. Also, the combination of
our algorithm modules achieves about the same (and in some
scenarios a slightly smaller) starvation probability and the same
fairness as the DC scheme which has been enhanced in this
paper with some minor refinements. In Section VI, we outline
an LP rounding approach to subproblem (ii). This approach
accommodates different optimization goals, taking for instance
the frame sizes into consideration when defining the frame
transmission priority, through a profit function. In Section VII,
we summarize our findings.

A. Related Work

In this section we give an overview of the existing literature
on the collaborative prefetching of continuous media. The
problem was first addressed in the patent filing by Adams
and Williamson [22] and in the conference paper [17] by
Reisslein and Ross. Both works independently proposed the
Join-the-Shortest-Queue (JSQ) scheme for the problem. The
JSQ scheme is a heuristic which is based on the earliest deadline
first scheduling policy. The JSQ scheme proceeds in rounds,
whereby the length of a given round is equal to the frame period
of the videos. In each round, the JSQ scheduler continuously
looks for the client which has currently the smallest reserve of
prefetched frames and schedules one frame for this client. (Note
that the scheduled frame is the frame with the earliest playout
deadline among all the frames that are yet to be transmitted to
all the clients.) If a client does not permit further transmissions
in the round, because the next frame to be transmitted for the
client does not fit into the remaining link capacity of the round
or the client’s prefetch buffer, then this client is removed from
consideration. This scheduling process continues until all of
the clients have been removed from consideration. This JSQ
scheme has been evaluated through simulations with traces
of bursty MPEG encoded video in [18]. It was demonstrated
that collaborative prefetching employing the JSQ scheme gives
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smaller playback starvation probabilities for a given load of
video streams than the statistical multiplexing of the individ-
ually optimally smoothed streams. Also, it was demonstrated
that for a given tolerable playback starvation probability, the
JSQ scheme supports more streams.

In the following years the JSQ scheduling principle for con-
tinuous media has been employed in video-on-demand (VOD)
system designs, see for instance [26], [27]. Lin et al. [26] em-
ploy a least-laxity-first policy in their design. The laxity is de-
fined as the deadline of a given chunk of video data minus
the current time minus the time needed to transmit the chunk.
Scheduling the chunk with the smallest laxity is thus roughly
equivalent to the JSQ principle. Lin et al. design a compre-
hensive VOD system that on the protocol side incorporates the
least-laxity-first policy and a variety of other mechanisms in
their overall design.

There have also been efforts to adapt the JSQ scheme, which
was originally designed for a centralized VoD system with one
server to a more general architecture with multiple distributed
servers sharing the same bottleneck link. The protocol design
by Reisslein et al. [28] for the distributed prefetching problem
employs quotas limiting the transmissions by the individual
servers. The protocol design by Bakiras and Li [29] smoothes
the videos over individual MPEG Groups of Pictures (GoPs)
to achieve a constant bit rate for a small time duration. These
constant bit rates for a given GoP are then exploited to conduct
centralized scheduling according to the JSQ scheme.

The JSQ scheme has also been employed in periodic broad-
casting schemes, which are employed in Near-Video-on-
Demand (NVOD) systems. Saparilla et al. [23] partition a
given video into segments using a fixed broadcast series (which
specifies the relative lengths of the segments). Li and Nikolaidis
[30] adaptively segment the video according to the bit rates of
the various parts of a given VBR video. In both designs the
transmissions of all the segments of all the offered videos share
a common bottleneck link and the JSQ scheme is employed for
the scheduling of the transmissions on the bottleneck link.

Fitzek and Reisslein [24] as well as Zhu and Cao [25] have
employed the JSQ scheme as a component in their protocols
designs for the streaming of continuous media over the shared
downlink transmission capacity from a base station to wireless
and possibly mobile clients. In these designs the JSQ scheme is
combined with additional protocol components that account for
the timevarying transmission conditions on the wireless links to
the individual clients.

Recently, Antoniou and Stavrakakis [20] developed a dead-
line credit (DC) scheme which is designed to achieve efficient
resource utilizations (similar to the JSQ scheme) and at the same
time ensure that the resources are shared in a fair manner among
the supported clients. As we describe in more detail, after having
introduced our notation in Section II, the DC scheme differs
from the JSQ scheme in that it uses a differently slotted time
structure and transmits the next frame for the stream with the
smallest number of on-time delivered frames.

More recently, Bakiras and Li [19] developed an admission
control mechanism for their JSQ based prefetching scheme first
presented in [29]. This admission control mechanism aggregates

Fig. 1. J prerecorded video streams are multiplexed over a bottleneck link of
capacity R bits=�, and prefetched into client buffers of capacity B(j) bits,
j = 1; . . . ; J .

the individual client buffers into one virtual buffer and then em-
ploys effective bandwidth techniques to evaluate the probability
for overflow of the virtual buffer, which corresponds to starva-
tion of client buffers.

We note in passing that there have been extensive analyzes of
employing the join-the-shortest-queue policy in queueing sys-
tems consisting of multiple parallel queues, each being serviced
by one or multiple servers, see for instance [31], [32] and ref-
erences therein. The problem considered in these studies differs
fundamentally from the problem considered here in that there
are multiple parallel servers in the queueing models, whereas
we have only one server in our problem setting. In addition,
there are multiple differences due to the periodic playout dead-
lines of variable size video frames in our problem setting and
the Poisson arrivals of jobs with exponentially distributed ser-
vice times considered in the queueing models.

II. SYSTEM SET-UP AND NOTATIONS

Fig. 1 illustrates our system set-up for the streaming of pre-
recorded continuous media. The multimedia server contains a
large number of continuous media streams in mass storage. To
fix ideas we focus on video streams. Let denote the number of
video streams in progress. The video streams are encoded using
some encoding scheme (such as MPEG, H.263, etc.). For our
initial algorithm framework development and analysis we as-
sume that the streams are of infinite length, i.e., have an infinite
number of video frames. (In Section IV-C we discuss how to ac-
commodate finite length streams in our algorithms.) Let
denote the size of the th frame of video stream . Note that for a
constant-bit-rate (CBR) encoded video stream the ’s are
identical, whereas for a variable-bit-rate (VBR) encoded video
stream the ’s are variable. Because the video streams are
prerecorded the sequences of integers
are fully known when the streaming commences. We denote

for the average frame size of video and let
denote the largest frame of video stream , i.e.,

. We denote for the ratio of the largest (peak)
to the average frame size of video , i.e., ,
and let denote the largest peak-to-mean ratio of the ongoing
streams, i.e., . Throughout this study our focus
is on VBR video, which allows for more efficient encoding com-
pared to CBR video [33]. Let denote the basic frame period of
the videos in seconds. We assume that all videos have the same
basic frame period . (Our algorithms extend to videos where
the frame periods are integer multiples of the basic frame period,



OH et al.: MODULAR ALGORITHM-THEORETIC FRAMEWORK FOR PREFETCHING OF CONTINUOUS MEDIA 203

as it typical for variable frame period video, in a straightforward
fashion by inserting zeros for the sizes of the missing frames.)

We denote for the transmission capacity of the bottleneck
link in bits per basic frame period (of length seconds) and
assume throughout that the switch and the links connecting
the switch to the clients are not a bottleneck. We also assume
that the transmission capacity of the link is large enough to
accommodate the largest video frame in one frame period, i.e.,

, which is reasonable as in practical sce-
narios the link supports a moderate to large number of streams

, whereby each individual stream contributes a moderate
fraction of the total load, even when this stream peaks in its
bitrate. We denote , , for the capacity of the
prefetch buffer (in bits) in client , which we assume initially
to be infinite (finite are accommodated in Section IV-C).

For our model we initially assume that all streams start at
time zero; all with an empty prefetch buffer. (In Section IV-C
we discuss how to accommodate a practical streaming scenario
where ongoing streams terminate and new streams start up.)
The video frame scheduling and transmission proceeds in slots
(rounds) of length . The transmission schedule for a given slot
is computed before the slot commences and the video frames
are transmitted according to the precomputed schedule during
the slot. The video frames arriving at a client are placed in the
client’s prefetching buffer. For our model we assume that the
first video frame is removed from the buffer, decoded, and dis-
played at the end of the first slot (denoted by ). (In fu-
ture work we plan to extend our model to accommodate start-up
latencies.) Each client displays the first frame of video stream
(denoted by ) during the second slot (denoted by ),
then removes the second frame from its prefetch buffer at the
end of this second slot, decodes it, and displays it during the
third slot, and so on. If at any one of these epochs there is no
complete video frame in the prefetch buffer, the client suffers
playback starvation and loses (a part or all of) the current frame.
(The client may try to conceal the missing encoding information
by employing error concealment techniques [34].) At the sub-
sequent epoch the client will attempt to display the next frame
of the video. Throughout, a video frame is not scheduled if it
would arrive after its playout deadline, i.e., frame of a stream
is only scheduled up to (and including in) slot . If frame can
not be scheduled before (or in) slot , then it is dropped at the
server (i.e., not transmitted) and the client will suffer a frame
loss (play back starvation) in slot .

More formally, we let , , denote the number
of bits in the prefetch buffer of client at the beginning of slot
, (and note that for ).

Let , , denote the number of bits that are
scheduled for transmission to client during slot . With these
definitions

(1)

where . Note that the buffer constraint
must be satisfied for all clients ,

, for all slots , . Also, note that the link
constraint must be satisfied for all slots ,

.

Let , , denote the length (run time) of the
prefetched video segment (in terms of basic frame periods) in
the prefetch buffer of client at the beginning of slot . (If all
frame periods of a stream are equal to the basic frame period,
then gives the number of prefetched video frames.) Let

, , denote the length of the video segment (in
basic frame periods) that is scheduled for transmission to client

during slot . Thus,

(2)

Let , , denote the number of video frames
that have been transmitted to client up to (and including in) slot

(and note the initial condition for ).
Let denote the minimum number of frames that have been
transmitted to any of the clients up to (and including in) slot ,
i.e., .

Let , , denote the lowest indexed frame
for stream that is still on the server and has not been dropped
at the beginning of slot . In other words, is the frame
with the earliest playout deadline that can still be transmitted
to meet its deadline. (In Section III we discuss in detail how
to maintain these variables.) Let denote the earliest deadline
frame among the ongoing streams on the server at the beginning
of slot , i.e., .

Let , , denote the number of video frames
of stream that have missed their playout deadline up to (and
including in) slot . The counter is incremented by one
whenever client wants to retrieve a video frame from its buffer,
but does not find a complete frame in its buffer. We define the
frame loss (starvation) probability of client as

We define the average frame loss probability
.

A. Outlines of JSQ and DC Schemes

Before we proceed with the development of our modular
algorithm-theoretic framework for collaborative prefetchting,
we briefly outline the existing schemes for collaborative
prefetching—the JSQ scheme [17] and the DC scheme [20]—in
terms of our notation. These outlines are intended to facilitate
the comparisons with our analytical framework throughout this
paper; for details on the JSQ and DC schemes we refer to the
respective references.

The JSQ scheme proceeds in rounds, with the length of a
round equal to the basic frame period of the video (in sec-
onds). For each round, the JSQ scheme precomputes the trans-
mission schedule by considering to transmit a frame for the
client with the smallest number of prefetched frames . If
the frame will meet its playout deadline and fits into the re-
maining link capacity for the round and buffer capacity of the
client, the considered frame is scheduled and the JSQ scheme
looks again for the client with the smallest (which may be
the same or a different client). If the frame will not meet its dead-
line, it is dropped and the next frame of the client is considered.
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If the considered frame does not fit into the remaining link band-
width or the buffer space, the client is removed from consider-
ation for this round and the client with the next smallest
is considered. This process continues until all clients have been
removed from consideration. The computational complexity of
the JSQ scheme with the originally proposed linked list data
structure [17], [18] is . We have developed a novel data
structure based on a group of linked lists, whereby each list
keeps the streams with the same . This novel data struc-
ture, for which we refer the interested reader to [35] for de-
tails due to space constraints, reduces the complexity of the JSQ
scheme to .

The DC scheme proceeds in slots, with the length of a slot sig-
nificantly shorter than the frame period of the video. When
considering the DC scheme we express the frame period in
units of slots (not seconds, as done for JSQ). A slot length of
1/100th of a frame period, i.e., slots is considered
in [20], but we found that shorter slot lengths give better re-
sults for the DC scheme and thus consider slots and
2000 slots in our numerical work, see Section V. At the begin-
ning of each slot the DC scheme looks for the stream with the
smallest priority index, which is defined as the current number
of prefetched frames minus the number of dropped frames

. We note that in our notation, .
Hence the priority index of the DC scheme is . Since
is the same for all clients, the DC scheme essentially considers
the client with the smallest number of on-time transmitted frame

. The DC scheme transmits the considered frame if it will
meet its playout deadline and fit into the remaining client buffer
space. If the frame is transmitted, the DC algorithm completes
the transmission of the frame and decides on the next frame to
transmit at the beginning of the next slot. If a considered frame
is not transmitted, the DC scheme considers the client with the
next smallest priority index. The complexity of one execution
of the DC algorithm is , which is due to the sorting
of the priority counters. The number of times that the algorithm
is executed in a frame period depends on the slot length and the
frame size distribution. In the worst case the algorithm is exe-
cuted times in a frame period. Thus, the computational effort
in a frame period is .

III. AVOIDING STARVATION WITH BIN PACKING

The key objectives of our algorithm-theoretic framework for
prefetching are to minimize starvation and to treat the clients
fairly, i.e., the number of instances of playback starvation should
be minimized and equally distributed among the clients. In
other words, the starvation probabilities of the clients should
be roughly equal. (In ongoing work we are extending this no-
tion of fairness to service differentiation with different classes
of service, whereby the clients in each class experience about the
same level of playback starvation.) The basic idea of our algo-
rithm module for achieving fairness is to schedule exactly one
frame per client for the clients which have so far received the
minimum number of frames. More formally, we establish a cor-
relation between the classical bin packing problem and the min-
imum number of slots needed to increase the minimum number
of transmitted frames to a client by one. Let be the set of

streams with the minimum number of transmitted frames, i.e.,
.

In the classical bin packing problem, objects with different
sizes and bins with a fixed capacity are given, and the problem
is to find the minimum number of bins required to pack all ob-
jects into the bins. Any object must be placed as a whole into
one of the bins. To pack an object into a bin, the residual bin
capacity must be larger than or equal to the size of the object. In
our video frame scheduling problem, we can think of the bottle-
neck link in each slot as a bin, the transmission capacity of the
bottleneck link in a slot (i.e., ) is the bin capacity, and the video
frames to be transmitted to the clients in are the objects.

A. Specification of BIN-PACKING-ROUND Algorithm

The BIN-PACKING-ROUND algorithm proceeds in loops.
Each iteration of the loop completes a bin-packing round. More
specifically, suppose a bin-packing round starts with the be-
ginning of slot and recall that denotes the minimum
number of video frames transmitted to any of the clients up to
(and including in) slot . During the bin-packing round
one video frame is scheduled for each of the clients in , i.e.,
the bin-packing round ends when the number of frames sched-
uled for each of the clients in has been incremented by one.
This may take one or more slots, and we refer to the slots in a
given bin-packing round as scheduling steps. Note that in the
“avoiding starvation” subproblem addressed in this section we
do not prefetch additional frames, i.e., once each client in
has been scheduled a frame we move on the next bin-packing
round, even though there may be residual capacity in the bins
(slots on bottleneck link) making up the bin-packing round. In
Section IV we efficiently fill this residual capacity with addi-
tional frames.

The schedule for a given bin-packing round starting at the
beginning of slot is computed with the BIN-PACKING-
ROUND algorithm, which is summarized in Fig. 2. At the
end of the BIN-PACKING-ROUND, we have pre-computed
the schedule of frames to be transmitted for each client for each
of the scheduling steps in this round.

The basic operation of the algorithm is as follows. The values
in step 1.1 are inherited from the end of the previous bin-packing
round and denotes the first time slot considered in the
new bin-packing round. The algorithm schedules one frame per
client in as long as the size of the frame fits into the residual
bandwidth , where is the corresponding time
slot found in step 3.1, and the frame playout deadline is met.
If necessary the frame is scheduled in a new slot . If no
such time slot meeting the frame’s playout deadline exists, then
the frame is dropped and the next frame in the same stream is
considered (step 3.3).

After a bin-packing round has been precomputed, the actual
transmission of the video frames is launched. Note that for each
client in (from the beginning of the bin-packing round) the
number of received frames is increased by one at the end of the
actual transmission of the frames scheduled for the bin-packing
round. That is for each client in the number of transmitted
frames is increased from , at the start of the bin-packing
round to at the end of one bin-packing round.
If a given bin-packing round is longer than one time slot (or
one scheduling step), then every client not scheduled in a slot
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Fig. 2. BIN-PACKING-ROUND algorithm.

inside the bin-packing round experiences a frame loss in slot .
Note that this does not hold when future frames are prefetched,
see Section IV.

B. Analysis of BIN-PACKING-ROUND Algorithm

Recall that we initially assume that all streams start at the
beginning of slot 0 with an empty prefetch buffer, i.e.,

for all clients . The number of scheduling steps comprising
the first bin-packing round is equal to the minimum number of
slots needed to transmit exactly one frame for each client. The
first bin-packing round ends with for all clients . The
second bin-packing round ends with for all clients ,
and so on. Hence, at any slot , or , for all clients

and for some integer .
During one bin-packing round consisting of scheduling

steps, each client will experience exactly frame losses
(provided no future frames are prefetched, see Section IV) and
the number of frame losses during this round is the same for all
clients, which is summarized in the following lemma.

Lemma 1: Suppose that all streams start at the beginning of
slot 0, then each client has the same number of frame losses in
one bin-packing round. Moreover, if we minimize the number
of scheduling steps in a bin-packing round, then we can also
minimize the number of frame losses by a client in this round.

The classical bin packing problem is well known to be
NP-hard. Hence, according to Lemma 1, it can be also
shown that achieving fairness while attempting to minimize
frame losses is NP-hard. The following lemma shows that
the BIN-PACKING-ROUND is a 1.7 approximation factor
algorithm using the analogy between our algorithm and a
well-known algorithm for the classical bin packing problem.
Let be the set of frames that will end up being transmitted in
this bin-packing round.

Lemma 2: The minimum number of slots to increase
by one when using the BIN-PACKING-ROUND algorithm is
asymptotically no more than , where is the minimum
number of slots to increase by one when an optimal algo-
rithm is used on the frames in .

Proof: We are essentially running the FIRST FIT (FF)
algorithm that solves the classical bin packing problem on the
frames in . The analogy between our algorithm and the FF
algorithm is as follows: The frames in are our set of objects

considered for the bin packing problem and the order in which
we consider them in the bin packing problem is exactly the order
in which they are considered by the BIN-PACKING-ROUND
algorithm, ignoring all the frames dropped in-between. Hence,
the number of slots in one bin-packing round calculated using the
BIN-PACKING-ROUND algorithm is the same as the number
of bins calculated using the FF algorithm for the classical bin
packing problem. The approximation ratio on the minimum
number of bins for the FF algorithm has been proven to be
1.7 asymptotically [36].

For the classical bin packing problem, we can achieve better
performance by running the FF algorithm after sorting frames
by nonincreasing order of sizes, which gives us an approxima-
tion factor of roughly 1.2 [36]. This algorithm is called the First
Fit decreasing algorithm. However, the FF decreasing algorithm
is not applicable to our problem. The reason is that we cannot
guarantee that the frames will always be considered in nonin-
creasing order since frames may be dropped, being replaced by
larger frames within a given bin-packing round. As a conclu-
sion, we introduce the following theorem, which follows imme-
diately from Lemma 1.

Theorem 1: We obtain a 1.7-approximation on the maximum
number of frame losses per client using the BIN-PACKING-
ROUND algorithm, if we consider only the set of frames trans-
mitted in this round.

Before we close this section, we consider the complexity of
the BIN-PACKING-ROUND algorithm.

Theorem 2: The BIN-PACKING-ROUND algorithm com-
putes a bin-packing round in , where is the number of
clients.

Proof: The worst case scenario is as follows. The number
of streams in is . For the th iteration of the for loop (Step
3), the corresponding stream (say, stream ) has to drop the first

frames, i.e., frames , at Step
3.3, and then schedules frame into the next empty
slot (i.e., it increases the number of scheduling steps in this bin
packing round). Hence the number of comparisons needed to
schedule a frame in the th iteration is . Since
and there are at most streams in , the overall time com-
plexity is .

For essentially all streaming scenarios of practical interest
we can assume that the sum of the average frame sizes of
all simultaneously supported streams is less than or equal to



206 IEEE TRANSACTIONS ON BROADCASTING, VOL. 51, NO. 2, JUNE 2005

the link capacity, i.e., . This condition is also
commonly referred to as stability condition and means that
the long run streaming utilization of the link bandwidth in
terms of the ratio of the sum of the long run average bit rates
of the supported streams to the link capacity is less than or
equal to 100%. Recalling from Section II that we know the
largest peak-to-mean frame size ratio for the prerecorded
videos, which is typically in the range from 8 to 15 [1], we can
significantly tighten the worst case computational complexity
as shown in the following corollary.

Corollary 1: Given the largest peak-to-mean ratio of the
frame sizes and the stability condition , the
BIN-PACKING-ROUND algorithm computes a bin packing
round in .

Proof: Note that

(3)

(4)

(5)

where (3) follows from the definition of , (4) follows from
the definition of , and (5) follows from the stability condition.
The FF heuristic always uses a number of bins which is at most
twice the sum of the sizes of the objects to be packed, divided by
the capacity of a bin [36]. Hence, for any set of frames involved
in a bin-packing round, the number of time slots in the bin-
packing round will be at most

bins (6)

Re-tracing the steps in the proof of Theorem 2, we note that
the number of comparisons needed to schedule a frame for any
given stream in a given bin packing round is bounded by

. Hence the overall time complexity of the
BIN-PACKING-ROUND algorithm is .

IV. MAXIMIZING BANDWIDTH UTILIZATION

WITH LAYERED PREFETCHING

While the bin-packing round algorithm module of the pre-
ceding section focuses on fairness among the clients, we now
turn to the subproblem of maximizing the bandwidth utiliza-
tion (efficiency) by prefetching future video frames. In this sec-
tion and in Section VI we introduce two algorithm modules to
maximize the bandwidth utilization after the schedule for the
bin-packing round has been computed. In this section we de-
fine a layered prefetching round as a series of computations that
schedules video frames after a bin-packing round is calculated
in order to better utilize the bandwidth. The basic idea of our
prefetching strategy is as follows: After the bin-packing round
schedule has been computed, the prefetching round computa-
tion starts as long as there is sufficient residual bandwidth in the
scheduling steps of the corresponding bin-packing round. It is
natural to schedule a frame with an earlier playout deadline be-
fore scheduling a frame with later playout deadline. Therefore,

a frame is considered for scheduling only if no frame with ear-
lier playout deadline can fit into the residual bandwidth.

A. Specification of LAYERED-PREFETCHING-ROUND
Algorithm

Let be the set of scheduling steps within
a given bin-packing round, each with residual bandwidth ,

. (If there is no residual bandwidth for scheduling
step , then .) Suppose that this bin-packing round starts
at slot , and ends at slot (i.e., scheduling step
corresponds to time slot ). We group the unscheduled
frames in the server queues according to their playout deadlines.
Recall that denotes the earliest playout deadline of the
unscheduled (and not yet dropped) frames on the server at the
end of the bin-packing round ending at the end of slot .
We define to be the group of unscheduled frames
whose playout deadline is . Hence the frames in

have the earliest playout deadline.
The goal of a prefetching round is to maximize the number

of frames scheduled for each group while enforcing the
earliest deadline first policy. We first consider the frames in
and schedule as many frames as possible into the residual band-
widths. When no more frames in fit into any of the residual
bandwidths, we consider the frames in , and schedule them
until no more frames fit into the residual bandwidths. This
process is repeated for each , until no frames
fit into the residual bandwidths or until there are no frames
left to be considered. At the end of this process, the scheduled
frames form the layers in each scheduling step; the frames from

form layer 0, the frames from form layer 1, and so on.
We consider the scheduling for each group as a variant of

the multiple knapsack problem: The set of knapsacks is defined
by the set , where ; the
capacity of knapsack is defined by , where
is the sum of the sizes of the frames in , ,
assigned to slot ; the objects to be packed are defined by all
frames from the group , where the profit of placing any frame
in a knapsack is always equal to 1. Our objective here is to as-
sign objects (frames in ) to the knapsacks (slots that meet the
deadline of the frames in on bottleneck link) in order to
optimize the total profit. We assume here that every video frame
has the same importance, i.e., the profit of packing (scheduling)
is the same for every frame. Thus, our goal is to maximize the
number of objects packed into the knapsacks. (The LP rounding
module introduced in Section VI is more general and assigns
different video frames different priorities.)

The LAYER algorithm provided in Fig. 3:(i) sorts the frame
in according to their sizes in nondecreasing order, and (ii)
schedules each ordered frame in the first scheduling step that
accommodates the frame size and meets its playout deadline.
We use again to denote the first time slot (scheduling step)
of the bin-packing round, and to denote the last time slot of
this bin-packing round. To optimize the bandwidth utilization,
our LAYERED-PREFETCHING-ROUND algorithm allows for
a frame with a later playout deadline to be transmitted prior to
one with an earlier deadline. Recall that , ,
denotes the number of frames that have been scheduled for client
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Fig. 3. LAYER algorithm for layer `.

Fig. 4. UPDATE algorithm.

so far. We define , , to be the number of
frames that are currently scheduled out of order for client . In
other words, is increased by one whenever a frame for
client is scheduled but some of its preceding frames (frames
with earlier playout deadlines) are still unscheduled in the server
queue. Let , , i.e., is the
number of frames that have been scheduled for client in order
(without gaps). Note that with the scheduling of future frames
with gaps, the (1) and (2) need to be modified to account for
frame deadlines.

The reason we have and in addition to is as
follows: Suppose that a stream has a large frame followed by
some small frames. Due to the restricted capacity of the residual
bandwidths, frame may not be scheduled, while the small
frames with later playout deadlines are scheduled during the lay-
ered prefetching rounds. If we consider only the total number of
transmitted frames for each client, then stream may not
have a chance to schedule any of its frames including frame
during the next bin-packing round due to the frames prefetched
in the previous rounds. As a result, frame may miss its dead-
line and a frame loss occurs. Such a frame loss is unnecessary
and unfair to stream . Hence, is used instead of
in determining the streams with the smallest number of suc-
cessfully transmitted frames. We modify the BIN-PACKING-

ROUND algorithm accordingly. The modified version of the al-
gorithm is presented in Fig. 6.

A prefetching round is computed by calling the LAYER
algorithm repeatedly for each layer , as specified in Fig. 5. In
practice we limit the number of times the LAYER algorithm
is called without significantly affecting the overall performance
of the prefetching round, see Section V. We denote for the
lookup window size that determines the number of times the
LAYER algorithm is called.

B. Analysis of LAYERED-PREFETCHING-ROUND Algorithm

Dawande et al. [37] give 1/2-approximation algorithms for
the multiknapsack problem with assignment restrictions. The
following lemma shows that our LAYER algorithm is a 1/2-
approximation factor algorithm.

Lemma 3: The algorithm LAYER is a 1/2-approxi-
mation algorithm on the maximum number of scheduled
frames from layer , given the residual bandwidths after
LAYER LAYER LAYER have been exe-
cuted in this order.

Proof: Let be the residual bandwidth of step at the
start of LAYER for . Let be the number of
scheduled frames by the LAYER algorithm and let be the
maximum possible number of scheduled frames in , given the
residual bandwidths of steps . The size of
any unscheduled frame at the end of LAYER is larger than
the maximum residual bandwidth of the respective scheduling
steps after LAYER is executed. Thus we can schedule at most

more frames, where is the residual band-
width of each scheduling step at the end of the LAYER
algorithm. Then the maximum number of scheduled frames

where is the number of scheduling steps in the bin-packing
round. Hence

If , it is obvious that the algorithm is a 1/2-approximation.
Suppose . We claim that the optimal solution cannot
schedule more than frames. Since , there exist at
least scheduling steps that do not have any frames from
layer after the LAYER algorithm ends. Let denote the set
of scheduling steps that contain at least one frame from layer ,
and let . We observe that the scheduling steps in

do not have enough residual bandwidth to transmit any of
the frames left at the server queue at the end of LAYER . The
scheduling steps in may have enough residual bandwidth to
accommodate some or all of frames which have been scheduled
in during the LAYER algorithm. Suppose we move all
these frames to the scheduling steps in , and try to schedule
more frames into scheduling steps in . Since the sizes of the
new frames are larger than the frames originally scheduled in

, we can schedule at most new frames into the scheduling
steps in . Therefore, the claim holds. Hence, The algorithm
LAYER is a 1/2-approximation algorithm on the maximum
number of scheduled frames.
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Fig. 5. PREFETCHING-ROUND algorithm with lookup window sizeW .

Fig. 6. BIN-PACKING-ROUND2 algorithm: the lines starting with symbol � are added or modified from the original BIN-PACKING-ROUND.

Lemma 4: The time complexity of the LAYER algorithm
is .

Proof: Since the number of elements in each group is
at most , sorting the frames in in nondecreasing order of
their sizes takes . The number of searches to schedule
each frame in is at most equal to the number of slots in
the bin-packing round, which is no larger than ; since there
are at most frames in each , the total amount time spent
in scheduling the frames in is . Updating and

takes only constant time by keeping a pointer to the first
frame in the server for each stream . Therefore, the overall time
complexity of the algorithm is .

The following theorem summarizes the above results:
Theorem 3: For given residual bandwidths, the LAYER

algorithm gives an 1/2-approximation factor on maximizing the
number of scheduled frames from group and its run time is

. The overall time complexity of the layered prefetching
round is , where is the lookup window size for
prefetching frames.

For practical streaming scenarios that satisfy the stability con-
dition and for which is known, the LAYER algorithm is
significantly less complex. Noting that in these practical sce-
narios the number of slots in a bin packing round is bounded by

, as shown in the proof of Corollary 1, we obtain the
following theorem:

Theorem 4: Given the largest peak-to-mean ratio of the
frame sizes and the stability condition

, the time complexity of the LAYER algorithm is
. The overall running time of a layered

prefetching round is .
Proof: Since the maximum number of steps considered in

a layered prefetching round is , the time for scheduling
the frames in is . Since we may also need to sort ,
in the worst-case, the complexity of the LAYER algorithm is

.
Most of the groups considered in a layered prefetching

round have already been considered (and therefore have already
been sorted) in previous rounds: There are only at most
“new” groups which need to be fully sorted in the current
round (since we only see at most new time slots in
this round, our lookup window shifts by at most this much, ex-
posing at most new groups which need to be sorted
from scratch in this round). It takes time to sort
the respective groups. We still need to schedule frames for
groups in a layered prefetching round. Thus the overall com-
plexity of a layered prefetching round is .

C. Accommodating Finite Stream Durations and Finite Buffers

For a newly joining stream at time we initialize
, , and as follows.
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1. Find .
2. If the minimum gap between the current time and the

earliest deadline among the unscheduled frames is
larger then zero, i.e., then
If the same existing stream attains both and ,
then we set .
Else we set the new video stream’s and

to the of the client attaining minus the
minimum of the gap.

3. Else we set
4. Set .

This approach is based on the following reasoning. Since the
new video stream has the end of the current slot as playback
deadline of the first frame, it has high urgency for transmission.
If the on-going streams have some frames in their buffer, they
may not need to transmit a frame urgently in the current slot. So
until the deadline of a frame of the new video stream is equiva-
lent to the earliest deadline among all unscheduled frames from
the on-going streams, the new video stream should be given pri-
ority over the other video streams. However, if there is at least
one already on-going stream that has the end of the current slot
as a deadline for an unscheduled frame, the new video stream
has at least the minimum of .

To accommodate finite client buffer capacities the server
keeps track of the prefetch buffer contents through (1) (modified
for the layered prefetching) and skips a frame that is supposed
to be scheduled but would not fit into the client buffer.

V. NUMERICAL RESULTS

A. Evaluation Set-Up

In this section we evaluate the algorithms developed and ana-
lyzed in the preceding sections through simulations using traces
of MPEG-4 encoded video. The employed frame size traces give
the frame size in bit in each video frame [1]. We use the traces of
QCIF video encoded without rate control and fixed quantization
scales of 30 for each frame type (I, P, and B). These traces cor-
respond to video with a low, but roughly constant visual quality.
The choice of these traces of low-quality video is motivated by
the fact that the traffic burstiness of this low-quality video lies
between the less bursty high-quality video and the somewhat
more bursty medium-quality video. The average bit rate of the
low-quality encoded videos is in the range from 52 kbps to 94
kbps. To achieve constant average utilizations in our simulations
we scaled the frame sizes of the individual to an average bit rate
of 64 kbps. The peak to mean ratios, standard deviations, and co-
efficients of variation (standard deviation normalized by mean
frame size) of the frame sizes of the scaled traces are given in
Table I.

All used traces correspond to videos with a frame rate of
25 frames per second, i.e., the frame period is
for all videos. For ease of discussion of the numerical results we
normalize the capacity of the bottleneck link by the 64 kbit/sec
average bit rate of the streams and denote this normalized ca-
pacity by . Note that , where is in
units of and is the frame period in seconds.

We conduct two types of simulations, start-up simulations
and steady state simulations. In the start-up simulations all

TABLE I
VIDEO TRAFFIC STATISTICS: PEAKTO MEAN RATIOAND STANDARD

DEVIATION OF FRAME SIZE. AVERAGE BIT RATE IS

64 kbps FOR ALL STREAMS

streams start with an empty prefetch buffer at time zero, similar
to the scenario initially considered in our algorithm develop-
ment. Whereas the streams had an infinite number of video
frames in our initial model, we fix the number of video frames
(stream duration) for the simulations at frames,
i.e., 10 minutes. We run many independent trials of this start-up
simulation. For each independent trial we randomly pick a
video trace for each ongoing stream and a random starting
phase into each selected trace. For each trial the loss probability
for each individual stream is recorded. These independent loss
probability observations are then used to find the mean loss
probability for each client and the 90% confidence interval of
the loss probability.

With the steady state simulations all streams start again at
time zero with an empty prefetch buffer and a random trace and
random starting phase are selected. In addition, each stream has
a random lifetime drawn from an exponential distribution with a
mean of frames. When a stream terminates (i.e., the last frame
of the stream has been displayed at the client), the corresponding
client immediately starts a new stream (with an empty prefetch
buffer) at the beginning of the next slot. For the new stream we
draw again a random trace, starting phase, and lifetime. With the
steady state simulation there are always streams in progress.
We estimate the loss probabilities (and their 90% confidence
intervals) of the individual clients after a warm-up period of
60 000 frames (i.e., 40 minutes) by using the method of batch
means.

All simulations are run until the 90% confidence intervals are
less than 10% of the corresponding sample means.

B. Comparison of JSQ and Modular BP Approach

In Table II we first examine the effect of the window size
on the performance of the combination of the BIN-PACKING-
ROUND and LAYERED-PREFETCHING-ROUND algorithm
modules, which we refer to as “bin packing” in the discussion
and as “BP” for brevity in the plots. We observe that the loss
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TABLE II
FRAME LOSS PROBABILITY WITH BIN PACKING AS A FUNCTION OF WINDOW

SIZEW ; R = 32, J = 30, B = 64 Kbytes

Fig. 7. Average frame loss probability as a function of buffer capacity B for
J = 14 and J = 15 streams for bin packing and JSQ for a link capacity of
R = 16.

probability decreases as the window size increases. That is,
as the layered prefetching algorithm considers more frames
for the scheduling, there is a better chance to fill even a very
small remaining transmission capacity. With the resulting higher
utilization of the transmission capacity and increased prefetched
reserves (provided the buffer capacity is sufficiently large),
the probability of playback starvation is reduced. However,
we also observe that the loss probability slightly increases as
the window size increases from to . In
brief, the reason for this is that with a very large window size
the bin packing algorithm tends to transmit frames that have
deadlines far into the future. These prefetched future frames
take up buffer space in the client and tend to prevent the
prefetching of (large) frames with closer playout deadlines.
Thus making the client slightly more vulnerable to playback
starvation. Overall the results indicate that a larger window
size generally reduces the loss probability; however, extremely
large window sizes may degrade the performance slightly.

Next, we evaluate the bin packing approach using the steady
state simulations and compare its performance with the JSQ ap-
proach. Fig. 7 gives the average frame loss probability as
a function of the prefetch buffer capacity . We set the trans-
mission capacity to and consider and 15 si-
multaneous streams. The window sizes for the bin packing al-
gorithm are set to for , for

, for , and
for . We observe from Fig. 7 that the frame

Fig. 8. Frame loss probabilities for individual clients with (a, b) mix of
a 64 kbps streams and b 128 kbps streams; R = 32, B = 64 Kbytes, and
W = 150, fixed.

loss probabilities with bin packing are roughly half of the cor-
responding loss probabilities for JSQ. For and a buffer
of , the JSQ scheme gives a frame loss proba-
bility of while bin packing gives a loss probability of

. For the smaller load of , the gap widens to loss
probabilities of for JSQ and for bin packing
The explanation for this gap in performance is as follows. The
JSQ scheme stops scheduling frames for a frame period when
the first unscheduled frame from none of the streams fits into
the remaining bandwidth. The bin packing scheme, on the other
hand, continues scheduling frames in this situation, by skipping
the frame(s) that are too large to fit and looks for smaller future
frames to fit into the remaining bandwidth.

Note that so far we have considered only the average (aggre-
gate) performance of the prefetch algorithm. We now examine
the fairness aspects. To test the fair allocation of transmission re-
sources we consider heterogeneous streaming scenarios, where
the ongoing streams differ in their average bandwidth, traffic
variability, stream lifetime, and client buffer capacity. First, we
consider heterogeneous average bandwidths. We set the link ca-
pacity to streams with an average bit rate of 64 kbps.
We stream either 30 streams with an average bit rate of 64 kbps,
a mix of 14 streams with an average bit rate of 64 kbps and
8 streams with an average bitrate of 128 kbps, or 15 streams
with an average bit rate of 128 kbps. Note that the average
system load is 30/32 in all three scenarios. We observe from
Fig. 8 that with JSQ the higher average bit rate streams experi-
ence larger frame loss probabilities than the lower average bit
rate streams. Considering the fairness criterion of distributing
the frame losses equally among the clients the higher bandwidth
clients are treated unfairly with JSQ. With BP, on the other hand,
the frame losses are fairly distributed.

Next, we examine the effect of mixing streams with different
variabilities. For this experiment we consider constant bit rate
(CBR) streams with a bit rate of 64 kbps and higher variability
streams (generated by increasing the variability of the traces
in Table I while maintaining the 64 kbps average bit rate.) In
Fig. 9 we plot the individual loss probabilities for a mix of CBR
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Fig. 9. Frame loss probabilities of individual clients for (a, b) mix of a CBR
and b higher variability streams; R = 32, J = 30, B = 64 KByte, fixed.

and higher variability streams. We observe that with JSQ the
clients with the higher variability streams experience smaller
frame loss probabilities than the clients with CBR streams. The
explanation for this result is as follows. The higher variability
streams have a small portion of very large video frames, but also
have a very large portion of small frames. As a result, higher
variability streams can transmit more (small) frames over any
remaining bandwidth. As a consequence the higher variability
streams have typically a larger number of frames prefetched and
thus experience fewer instances of play back starvation. Com-
paring the frame loss probabilities for JSQ and bin packing, we
observe that bin packing gives again smaller and roughly equal
loss probabilities for the individual clients.

In additional experiments, which we can not include here due
to space constraints, we have found that the average stream life
time and client buffer size have a relatively small impact on the
fairness, see [35].

C. Comparison of DC Scheme With Modular BP Approach

In this section we compare the DC scheme, which we
briefly outlined in Section II-A, with our modular bin packing
approach. We use the start-up simulation set-up for this compar-
ison as the DC scheme is formulated for this scenario in [20].
We present results for our experiments with and
2000 slots per frame period. (We found that these shorter slot
lengths give better results; a slot length of 1/100th of the frame
period is considered in [20].) In the DC scheme the client buffer
capacity is expressed in terms of a maximum deadline credit
counter in units of number of video frames (which are of vari-
able size for VBR-encoded video resulting in varying capacity
in terms of the deadline credit counter). For the comparison
with our scheme where the buffer capacity is a fixed number
of bytes, we considered two adaptations of the DC scheme.
In the “DC avg.” adaptation we convert the buffer capacity
in bytes to a maximum deadline credit counter (in number of
video frames) using the average bit rate of the video. In the
“DC ref.” adaptation we convert the buffer capacity in bytes to
the maximum deadline credit counter using the actual sizes of
the frames in the buffer and considered for transmission.

TABLE III
FRAME LOSS PROBABILITY COMPARISON BETWEEN DC, JSQ, AND BP

APPROACHES (R = 16, B = 64 Kbyte)

TABLE IV
FRAME LOSS PROBABILITY P AND COMPUTING TIME T COMPARISON

BETWEEN DC AND BP APPROACHES (R = 32, B = 64 Kbyte)

TABLE V
FRAME LOSS PROBABILITY P AND COMPUTING TIME T COMPARISON

BETWEEN DC AND BP APPROACHES (R = 64, B = 64 Kbyte)

In Table III we compare the DC avg., DC ref., JSQ, and BP
approaches in terms of the frame loss probability for a system
with a link capacity of . We observe from the table that
considering the 90% confidence intervals of 10% around the re-
ported sample means, bin packing gives smaller loss probabili-
ties than the DC scheme for . For , the DC scheme
with the refined adaptation gives approximately the same perfor-
mance as the other schemes.

To gain further insight into the relative performance com-
parison of the DC and BP approaches we compare in Ta-
bles IVthrough VI the DC ref. scheme with slots
with the BP approach in terms of the frame loss probability

and the computation time . The computation time
measures the time needed to compute the scheduling decisions
for a frame period on a contemporary PC with Pentium IV
processor running at 3.2 GHz. We observe from the tables that
the computing times for the DC and BP schemes are roughly
the same; there is a slight tendency for the BP approach to be
faster, but the differences are rather small. We note that all
measured computation times are well below the duration of a
frame period, which is 40 msec with PAL video and 33 msec
with NTSC video.

Turning to the results for the frame loss probability in
Tables IV–VI we observe that the difference in widens
as the link capacity increases and a correspondingly larger
numbers of streams are transmitted. Whereas for the
scenario the BP gives roughly half the of the DC scheme,
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TABLE VI
FRAME LOSS PROBABILITY P AND COMPUTING TIME T COMPARISON

BETWEEN DC AND BP APPROACHES (R = 128, B = 64 Kbyte,
J = 122 AND 123 GIVE WITH BP EXCEEDINGLY SMALL P VALUES

WHICH ARE OMITTED)

the gap widens to over one order of magnitude for the scenario
with . This appears to indicate that the BP scheme is
better able to exploit the increased statistical multiplexing effect
that comes with an increased number of streams.

When interpreting the results in Tables IV–VI from the
perspective of the number of supported streams subject to a
fixed maximum permissible frame loss probability, we observe
that the BP approach gives for
streams in all considered scenarios. (When the number of
streams is increased to the stability limit, i.e., , and
beyond the loss probability generally increases significantly
and the range is therefore generally not of interest.)
The DC approach, on the other hand, supports fewer streams
with the criterion; for the scenario
up to streams.

To gain insight into the frame loss patterns we have examined
the runs of consecutively lost frames and the runs of consecu-
tive frames without any losses. We found that the frame losses
are not bursty; rather the runs of lost frames consist typically of
only one frame. For the scenario with and ,
for instance, and with the BP approach the lengths of the runs
of consecutively lost frames have a mean of 1.016 frames and a
standard deviation of 0.019 frames, while the lengths of the runs
of frames without any loss have a mean of 1480.1 frames and a
standard deviation of 28.41 frames. With the DC approach, on
the other hand, the lengths of the runs of lost frames were one
frame in all simulations, and the lengths of the runs of frames
without any loss had a mean of 331.3 frames and a standard
deviation of 2123.6 frames. In more extensive simulations (see
[35]) we have also observed that the DC scheme is approxi-
mately as fair as the modular bin packing approach.

D. Comparison of Modular BP Approach With LP Solution

To further assess the performance of the modular bin packing
approach we compare it with the following linear relaxation of
the prefetching problem. Let denote the total number of con-
sidered frames in stream . Recall from Section II that the end of
slot is the deadline of frame of stream . We use the variable

to denote the fraction of frame of stream that is trans-
mitted during slot . The first constraint-set (8) says that
is at least the (fractional) number of dropped frames for every
stream . The second constraint-set (9) says that no more bits

TABLE VII
MAXIMUM FRAME LOSS PROBABILITY AMONG J = 10 streams, R = 10:5

can be scheduled during any time slot than the bandwidth al-
lows. The last constraint-set (10) says that each frame can only
be counted once toward the number of scheduled frames.

subject to (7)

(8)

(9)

(10)

An optimal (minimum ) solution to this LP is a lower
bound on the maximum frame loss probability of a client.
Solving the LP becomes computationally prohibitive even for
moderate numbers of considered frames . We were able to
run 20 iterations of a start-up simulation with stream durations
of frames. In Table VII we report the maximum (frac-
tional) frame loss probability (with 90% confidence interval)
corresponding to the LP solution and the corresponding
maximum frame loss probability obtained with the modular
bin packing approach for the same 20 experiments. Although
the confidence intervals are quite loose, due to the enormous
computational effort, the results do indicate that the solutions
are generally of the same order of magnitude. One has to keep
in mind here that the LP does not (and can not) enforce the
delivery of complete video frames whereas the bin packing
approach delivers only complete video frames as they are
required for successful decoding.

VI. MAXIMIZING UTILIZATION WITH LP ROUNDING

In this section, we consider again the scenario presented
in Section II, where all streams start at time zero with empty
prefetch buffers. We outline a more general algorithm module
to solve the subproblem of maximizing the bandwidth utiliza-
tion. This more general module is more flexible than the layered
prefetching module developed in Section IV. Whereas in the
layered prefetching module every prefetched frame increases
the profit by one, the LP rounding module developed in this
section accommodates more general profit functions. With this
more general profit function module we can accommodate
different optimization objectives, such as minimize the long
run fraction of encoding information (bits) that misses its
playout deadline (note that the layered approach was limited
to minimizing the frame loss probability). Also, we can assign
the frames different priorities, e.g., higher priority for large
Intracoded (I) frames.

Our more general solution approach is based on solving a
linear relaxation of the original problem and then rounding the
fractional solution to obtain an integer solution for the original
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problem. We reduce our problem to a maximization version of
the generalized assignment problem (Max GAP). The Max GAP
is defined as follows: There is a set of items and a set of
knapsacks. Each item has to be assigned to exactly one of the
knapsacks; each knapsack has a capacity , and there is a
profit and a size associated with each knapsack

and each item . The optimization
criterion is to maximize the total profit. This problem has been
shown to be APX-hard [38], even for the case when all frames
have equal profit [39]. In our problem, the set of knapsacks is
defined by the set , the capacity of knapsack is defined by

, , and the objects to be packed are defined by
the frames to be transmitted to the clients. The profit of placing
a frame in a knapsack can be defined as follows. Let be the
maximum residual bandwidth after a bin-packing round, i.e.,

. Then the profit of frame of stream can
be defined as

(11)

if frame is scheduled into a time slot , otherwise,
. Note that the frames in the same group have

the same profit. Our objective here is to assign objects (frames)
into the knapsacks (scheduling steps) in order to maximize the
total profit. As we will see later, for the given profit function, the
objective of the prefetching round is to maximize the number of
frames scheduled for each group , where the groups are
considered in increasing order of .

Claim 1: For the profit function defined above, a frame is
scheduled only after no frame with earlier deadline can be
scheduled into the residual bandwidth.

Proof: To prove this claim, we show that scheduling one
frame for group always produces higher profit than sched-
uling frames for , , where is the maximum residual
bandwidth. Since

for , the claim holds.
The above claim implies that for the profit function we de-

fined in (11), the Max GAP is equivalent to the multiknapsack
problem presented in Section IV. The approximation bounds ob-
tained by both approaches are the same, as we will see shortly.

The Max GAP approach has the advantage that it allows
for different profit functions. These profit functions translate
into different optimization criteria, which we explore in Sec-
tion VI-A in greater detail. On the downside, the solution
techniques for the Max GAP are more involved than the ones
presented in Section IV.

The algorithm we use for computing the prefetching round is
based on solving the linear relaxation and rounding technique
given in [40]. Due to space constraints we give here only a brief
sketch of our proposed algorithm module. We first convert the
problem into a minimization problem, by changing profits into
suitable costs. We then solve a linear relaxation of a parametric
version of the minimization problem (where the sizes of the bins
are scaled up by a factor of 2). We build a bipartite graph with
edge costs based on the solution to this linear relaxation, and
find a minimum cost matching on this graph. We schedule the

frames according to this matching. A key property to be used
during the scheduling is that if we exceed the link capacity at any
scheduling step, the results in [40] guarantee that there exists a
frame to be removed which contributes to less than half of the
profit in that step. A full description of this algorithm appears
in [35], which gives also the proofs of the following lemmas on
the approximation guarantees of the algorithm:

Lemma 5: The prefetching algorithm outlined in this section
is a 1/2-approximation algorithm on the total profit.

Lemma 6: If we optimize the total profit, then we also maxi-
mize the number of frames scheduled for each group , given
the frames that have already been scheduled for .

A. Profit Functions

The LP rounding approach allows us to achieve different ob-
jectives by simply changing the profit functions for each frame.
According to the profit function (11), the profits of the frames
with the same playout deadlines are equal. Hence, in order to
optimize the total profit according to (11), it is necessary to
maximize the number of frames to be scheduled in each playout
deadline group. If instead we want to optimize a different objec-
tive, such as the number of bits to be scheduled for each group,
the profit function can be changed accordingly. In the case of
maximizing the number of bits delivered in time, a new profit
function for frame (which is to be removed from the prefetch
buffer at the end of slot , see Section II) can be defined by

(12)

if frame is scheduled into time slot and if
. We observe that the profit function (12) has the following

properties.

• Among the frames in the same group, the larger the frame
size, the higher the profit.

• If frames , , and are in the same group and
, then .

• The profit of a frame in group is always larger than
that of a frame in group .

For many video encoding schemes, e.g., MPEG with predic-
tive encoding, the large intracoded frames are more important
than the smaller predictive encoded frames. In that case, it may
be beneficial to schedule a large frame for group in-
stead of a small frame for group . Let the profit function
then be

(13)

if frame is scheduled into time slot where ;
if . Consider an example where

and . Suppose that there are two frames and .
According to the profit function (13), the profit of frame
is equal to or larger than that of frame if the size of frame
is at least five times larger than the size of frame .

VII. CONCLUSION

We have developed a modular algorithm-theoretic framework
for the prefetching of continuous media over a bottleneck link.
We have divided the problem into the two separate subproblems
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of (i) ensuring fairness, and (ii) efficient bandwidth utilization.
We have developed algorithm modules for both subproblems.
We have investigated the theoretical performance bounds and
complexities of the individual algorithm modules and compared
the playout starvation probabilities achieved by the combination
of the modules with the JSQ and DC prefetching schemes. Our
simulation results indicate that the combined modules compare
favorably with the existing JSQ and DC schemes, thus demon-
strating the competitiveness of our modular approach.

There are several interesting and important avenues for fu-
ture work. One avenue is to develop new algorithm modules for
the first—the ensuring fairness—component in our algorithm
framework. In particular, those new algorithm modules could
be designed to generalize the notion of fairness from providing
all clients with the same service quality to providing different
classes of service quality.

Another avenue for future work is a detailed study of the profit
function space outlined in Section VI-A. The goal of such a
study could be to prioritize the prefetching of the video frames
according to their contribution to the perceived decoded video
quality to maximize the efficiency of the streaming not only in
terms of the number of simultaneously supported streams, but
also in terms of the visual quality provided by these streams.

We believe that our modular algorithm framework provides a
solid foundation for these future explorations.
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