
An Automated Technique for Topology and Route
Generation of Application Specific On-Chip

Interconnection Networks
Krishnan Srinivasan, Karam S. Chatha, and Goran Konjevod

Department of CSE, PO BOX 875406, Arizona State University,
Tempe, AZ 85287-5406

Email: �ksrinivasan,kchatha,goran�@asu.edu

Abstract— Network-on-chip (NoC)) has been proposed as a
solution to the communication challenges of System-on-chip
(SoC) design in nanoscale technologies. Application specific SoC
design offers the opportunity for incorporating custom NoC
architectures that are more suitable for a particular application,
and do not necessarily conform to regular topologies. Custom
NoC design in nanoscale technologies must address performance
requirements, power consumption and physical layout consider-
ations. This paper presents a novel three phase technique that i)
generates a performance aware layout of the SoC, ii) maps the
cores of the SoC to routers, and iii) generates a unique route
for every trace that satisfies the performance and architectural
constraints. We present an analysis of the quality of the results
of the proposed technique by experimentation with realistic
benchmarks.

I. INTRODUCTION

On-chip interconnection networks or Networks-on-Chip
(NoC) have been proposed as a solution for addressing the
global communication challenges in System-on-Chip architec-
tures that are implemented in nanoscale technologies [1] [2].
An example of the NoC architecture is shown in the right
hand side of Figure 1. The figure depicts a physical layout of
an example SoC architecture. The various square blocks with
labels (P1, P2, and so on) denote processing or storage cores.
The black filled boxes denote routers that are connected by
physical links.

Application specific SoC design offers the opportunity for
incorporating custom NoC architectures that are optimized for
the target problem domain, and do not necessarily conform to
regular topologies. Regular topologies are suitable for general
purpose architectures such as the MIT RAW [3] that include
homogeneous cores. Application specific SoC architectures
consist of heterogeneous cores and memory elements which
have vastly different sizes. For such architectures, the custom
NoC architecture has been demonstrated to be superior to
regular architecture in terms of power, area and performance
by Jalabert et. al. [4]. This paper concentrates on the design
of custom NoC topologies that are optimized for the target
application.

The design of custom NoC architectures poses several chal-
lenges to the designer. The interconnection architecture must
provide sufficient bandwidth for low latency congestion free

P6

[H, W]

{B, L]

P1

P4

P2

P5

P7

P3

P1 P2

P4 P5 P3

P6 P7

Fig. 1. Application Specific NoC Design Problem

communication between the various units in the architecture.
Power reduction has emerged as a first order design goal
in nanoscale technologies. Hence, the designer must aim to
minimize the power consumption for on-chip communication
in the interconnection architecture. Due to technology scaling,
the physical links consume upwards of 30 % of the total
communication power. The power consumption in the physical
links is linearly dependent on their length. Therefore, custom
NoC design must include physical layout information.

The custom NoC design problem is depicted in Figure 1.
The input to the problem is the system-level specification
described by a directed communication trace graph in which
the nodes represent various computation and storage elements,
and edges denote communication between two units. The
nodes include physical dimension information (height and
width, H and W in the figure) about the processing and
storage elements, and edges are annotated with bandwidth
and latency requirements (B and L in the figure). The output
of the custom NoC design stage (shown in the right side
of the figure) is a physical layout aware topology and a
unique route for every edge in the system-level specification
that satisfies the performance requirements, and minimizes
the power (primary goal) and area (secondary goal) of the
interconnection architecture. This paper presents an automated
technique for solving the custom NoC design problem.

Automated design of custom NoC architectures requires
a characterized library of interconnection network building
blocks. We characterized the power consumption of the unit
router in 100 nm technology with the help of a cycle accurate
power and performance evaluator [5]. In the interest of space,
we have omitted the complete details of the experiments. The
variation of power consumption with injection rate for the
input and output ports of a router are shown in Figures 2

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

1.20E+00

1.40E+00

1.60E+00

1.80E+00

0 0.01 0.02 0.03 0.04 0.05 0.06

Injection Rate (packets/cycle)

In
p

u
t

P
o

rt
 P

o
w

er
 (

m
W

)

Fig. 2. Input port power consumption

0.00E+00

5.00E-02

1.00E-01

1.50E-01

2.00E-01

2.50E-01

3.00E-01

3.50E-01

4.00E-01

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Cumulative Injection Rate (packets/cycle)

O
u

tp
u

t
P

o
rt

 P
o

w
er

 (
m

W
)

Fig. 3. Output port power consumption

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

1.20E+00

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Cumulative Injection Rate (packets/cycle)

L
in

k
P

o
w

er
 (

m
W

)

Link Length = 2500 um

Fig. 4. Link power versus injection rate

3.00E-01

4.00E-01

5.00E-01

6.00E-01

7.00E-01

8.00E-01

1.00E+03 1.50E+03 2.00E+03 2.50E+03 3.00E+03 3.50E+03

Link Length (um)

L
in

k
P

o
w

er
 (

W
)

Injection Rate = 0.0089

Fig. 5. Link power versus length

0

200

400

600

800

1000

1200

1400

1600

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Injection rate (packets/cycle)

L
at

en
cy

 (
cy

cl
es

)

Latency

Fig. 6. Latency for 2 routers

0

200

400

600

800

1000

1200

1400

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Injection rate (packets/cycle/node)

L
at

en
cy

 (
cy

cl
es

)

Latency

Fig. 7. Latency for 4x4 mesh

and 3, respectively. The power consumption of the input and
output ports vary linearly with the injection rates, respectively.
Quantitatively, we estimated the power consumption of the
input port as ����������, and ����������� for the
output port.

We studied the variation of link power with respect to the
bandwidth flowing on the link, and its length. Figure 4 plots
the variation of link power with the supported bandwidth.
Figure 5 plots the variation of link power with its length. The
power consumption of the physical links varies linearly with
both the supported bandwidth, and the length of the link. We
estimated the power consumption of the links to be equal to
��������������.

The variation of average latency for data packets that travel
over two router hops with respect to injection rate is shown in
Figure 6. The average latency remains almost constant in the
un-congested mode, and onset of congestion is marked by a
sharp increase in latency. As shown in Figure 7, a similar trend
is observed for average latencies of packets in a 4x4 mesh. Our
technique prevents network congestion by static routing of the
communication traces subject to the peak bandwidth constraint
on the router ports. Since the network is always operated in
the un-congested mode, we can represent the network latency
constraint in terms of router hops (such as 1 or 2) instead of
an absolute number (such as 100 cycles).

In the following section we define the NoC design problem.

A. Problem Definition

Given:

� A directed communication trace graph 	�
���, where
each � �
 denotes either a processing element or a
memory unit (henceforth called a node), and the directed
edge �� 	 ��� �� � � denotes a communication trace

from � to � . For every � �
 , the height and width of
the core is denoted by �� and ��, respectively.

� For every �� 	 ��� �� � �, ����� denotes the band-
width requirement in bits per cycle, and ����� denotes
the latency constraint in hops.

� A router architecture, where
 denotes the peak input
and output bandwidth that the router can support on any
one port. Thus, each port of a router can support equal
bandwidth in input and output modes. Since a node �

is attached to a port of a router, the bandwidth to any
node from a router, and from any node to a router is less
than
. Two quantities �� and �� that denote the power
consumed per ���� of traffic bandwidth flowing in the
input and output direction, respectively for any port of
the router.

� A physical link power model denoted by �� per ����
per ��.

Let � denote the set of routers utilized in the synthesized
architecture, �� represent the set of links between two
routers, and �� represent the set of links between routers
and nodes. The objective of the NoC design problem is to
generate a system-level floorplan, and a network topology
� ���
� ��� ���, such that:
� for every �� 	 ��� �� � �, there exists a route

� 	���� ���� ���� ���� � � � ���� ��� in � that satisfies
�����, and �����,

� the bandwidth constraints on the ports of the routers are
satisfied, and

� the total system-level power consumption for inter-core
communication is minimized (primary goal), and number
of router resources is minimized (secondary goal).

In the above problem formulation we assume that the
maximum physical link length that permits single clock cycle
data transfer between neighboring routers is denoted by the

maximum dimension (��� or � ��) of a node in the system-
level specification. This assumption is based on the fact that
it is possible to perform intra-core single clock cycle data
transfer from one corner of node to the any of the neighboring
corners. We also consider that the dimensions of the routers
are much lower than the sizes of the cores. This assumption
is supported by the observation of Dally et al. [1] that the
entire NoC places an area overhead of 6.6% on the SoC
architecture. Therefore, we assume that the routers that are
possibly utilized in the layout are located at corners of the
cores. If ����� � ��� denotes the lower left hand side corner
of the node, the core is mapped to one of the routers located
at ����� � ���, ���� ���� � ���, ����� � �� ���� or
���� ���� � �� ����.

The power consumption of the NoC can be minimized by
minimizing the cumulative traffic flowing through the ports
of all routers. Traffic flowing in a network can be reduced by
placing communicating cores close to each other. However, the
close location of the communicating cores must be traded-off
with the latency constraints.

The latency constraints imposed by the traffic traces specify
the maximum number of hops allowed for the trace. Band-
width requirements and latency constraints of communication
traces can be viewed as mutually independent. A trace such
as a signalling event or a cache miss is not expected to have
high bandwidth requirement, but is bound by tight latency
constraints. On the other hand, many non-critical multimedia
streams have high bandwidth requirement, and their latency
is bound only by the period constraint of the application [6].
A NoC design framework has to perform a trade-off between
placing communicating cores with high bandwidth, and those
with tight latency close to each other to minimize power, and
to satisfy the performance constraints, respectively.

The NoC synthesis problem as described above is a variation
of the generalized steiner forest problem that is known to
be NP hard [7]. We present a three phase technique that i)
generates a performance aware layout of the SoC, ii) maps the
cores of the SoC to routers, and iii) generates a unique route
for every trace that satisfies the performance and architectural
constraints.

The paper is organized as follows: in Section II we discuss
previous work, in Section III we present our technique, in
Section IV we discuss our experimental results, and finally in
Section V we conclude the paper.

II. PREVIOUS WORK

Many researchers [8] [9] [10] [11] have presented core map-
ping and routing techniques for mesh based NoC architectures.
Recently, researchers have begun to address the problem of
automated design of application specific NoC architectures.
Pinto et al. [12] presented a technique for constraint driven
communication architecture synthesis of point to point links
by utilizing deterministic heuristic based k-way merging. Their
technique results in network topologies that have only two
routers between each source and sink. Hence, their problem
formulation does not address routing. In [6], Murali et al.

(A)

C7

C8

C3

C6

C1

C2

C5

A

C

B E

F

D
C4

Fig. 8. CTG

V

H H

V V V V

A B C D E F

Fig. 9. Slicing Tree

X
Y

Y

(D)(C)(B)(A)

E

F

A D

B

C

E

F

A

C

A

B

C

E

D

F

A D

B D

B C E F

Fig. 10. Initial Floorplanner

presented a technique that integrates physical planning with
quality of service. However, they do not address synthesis of
custom NoC topologies. We on the other hand, synthesize an
application specific custom topology optimized for the target
application. Further, they propose a computationally complex
solution for the problem, where they iteratively invoke an
MILP based placement technique in a tabu search framework.
In contrast, we present polynomial time algorithms for in-
tegrated floorplanning, and topology synthesis of application
specific custom NoC architectures.

III. SYNTHESIS OF CUSTOM NOC ARCHITECTURES

In this section, we present our application specific on-
chip interconnection architecture synthesis technique. Our
technique operates in three phases. In the first phase, it
invokes a performance aware slicing tree based floorplanner
to obtain an initial physical layout of the nodes constituting
the SoC. In the second phase, the technique invokes a linear
programming (LP) based algorithm that maps the processing
cores to different routers such that the power utilized for
communication is minimized. Finally, in the third phase, it
executes a LP based routing algorithm that generates routes
for the traces such that the total number of routers utilized in
the topology are minimized. In the following sections, we will
discuss each phase in detail.

A. Initial Floorplanner

We utilize a slicing tree based initial floorplanner (IF)
described in [13]. In this paper, we present an overview of
the technique, and refer the reader to [13] for further details.
Unlike [13], we do not add extra nodes. Figures 8, 9, and
10 give examples of an input CTG, slicing tree, and various
stages of the algorithm execution, respectively. The slicing tree
is formed by recursively dividing the layout area into vertical
and horizontal sections. In Figure 9, the letter
 denotes that
the plane is divided into a left and right sub-plane by a vertical
cut, and the letter � denotes that the plane is divided into top
and bottom sub-planes by a horizontal cut.

IF invokes a graph equicut algorithm proposed by Fiduccia
and Mattheyses (FM) [14] to generate the partitions. The
partitioning technique assigns nodes to one of the sub-planes
such that the total weight of the edges across the cut is
minimized. IF assigns a weight to each edge as follows.
Bandwidth constraints on the ports of routers can be satisfied

by finding alternative (sometimes longer) route for the trace.
Latency constraints on the other hand cannot be adhered to by
finding alternative paths. Therefore, IF gives higher priority to
latency compared to bandwidth. Let �� be a trace with the
highest bandwidth requirement among all traces in the graph.
Let �� be the trace with tightest (lowest) latency constraint
among all traces in the graph. IF determines an integer �
such that it is the minimum value required to ensure that
�����
	�����

�
���� �
	��� ��

. Once � is determined, IF assigns an edge

weight to each edge given by �� � �� ���� 	 ����
	���� . For two

edges with the same edge weight, the one with tighter latency
has higher priority. This heuristic ensures that traces with low
bandwidth requirements, but with tight latency constraints are
given priority over those with high bandwidth requirement and
relaxed latency constraints.

After the floorplan is generated, our technique invokes
a compaction algorithm that takes the actual sizes of the
processing cores into account and generates a final layout.
The compaction stage is required as we utilize a slicing
tree based floorplanning algorithm. The slicing tree based
heuristic assigns the nodes to bounding boxes at rectangular
grid locations. As the size of the bounding box is typically
larger than the size of the node, we require a compaction
stage. The compaction algorithm first moves all nodes toward
the center of the layout in the X direction, and then moves
all nodes in the Y direction, again toward the center of the
layout. The movement in X and Y directions is repeated until
no further compaction is possible.

B. Core to router mapping technique

In this section, we present a linear programming based
technique called CMT that maps each processing or storage
core to one router that is located at the corners of the core.
We present a lower bound on the optimal solution, and utilize
a randomized rounding algorithm to arrive at the optimal (or
near optimal) solution.

For node �, let �� denote the set of routers to which � can
be mapped. Let ��
� denote a (0,1) integer variable that is set
to 1 if node � is mapped to router � � ��, else 0. Each node
is mapped to one of the routers located at its four corners.
Therefore, there are � 	
 	 variables of this type. For each
edge ��� �� let ��
�
�
� denote the communication cost when
node � is assigned to router � and node � is assigned to
router �. The cost denotes the power consumed to perform this
communication. Therefore, ��
�
�
� 	 ��
� � �����
� where ��
�
is the bandwidth requirement of the edge ��� ��, and �����
�
is the Manhattan distance between routers � and �. Let vector
� �
 	
 	 � �� denote the possible assignments of nodes to
different routers, and matrix ��
 	
 	�
 	
 	� (with elements
��
�
�
� � �) denote the costs of the various mappings. The
problem is to obtain an assignment of the nodes such that
the total communication cost is minimized. The problem is
a special case of the quadratic assignment problem (QP) and
can be expressed mathematically as follows.

������ � ����

!"���#� �$ �� �
�
�

����

��
� 	 �

where �� denotes the set of routers that node � can be mapped
to. The constraints enforce the requirement that each node
is mapped to exactly one router. QP is among the hardest
problems to solve in combinatorics. It is well known that the
formulation presented above cannot be solved in polynomial
time unless the matrix � is positive semi-definite. In other
words, in order for the QP to be polynomial time solvable, all
determinants of the principal submatrices of � should be non-
negative [15]. In matrix �, the diagonal elements indicate the
communication cost from a node to itself, and therefore, are
zero. Hence, � is not positive semi-definite. One way to make
the QP polynomial time solvable is to increase the cost of the
diagonal elements of � by some value % to make the matrix
positive semi-definite, solving the QP, and finally subtracting
% obtain the final solution. But this can result in sub-optimal
solutions for the QP [15]. The objective function of QP with
constant % added to the diagonal elements is of the form

�

��
���

��
�
��
�
 ��
�
�
� � %

�

���

�

�

��
�
�

If % is large, the square terms dominate the objective function,
and therefore, the minimizer would tend to assign values close
to �

����
(�

� for the stated problem) to the variables ��
� .
Hence, a randomized rounding scheme that assigns a variable
��
� to 1 with probability ��
� , will assign node � to any of
the four routers with almost the same probability, and may not
perform well.

We are interested in the integer solution of the QP. Since
even the continuous version (where variables can take frac-
tional values) is hard to solve, we formulate the integer version
as an integer linear program (ILP). An ILP in general is not
polynomial time solvable unless & 	 '& . Therefore, we
relax the integer constraints on the ILP, and solve the problem
as an LP. An optimal solution to any linear program can
be generated in time polynomial in the number of variables
and constraints [16]. Noting that the integer versions of the
QP and LP solve the same problem, we apply a randomized
rounding technique on the QP by rounding a variable to 1 with
a probability given by the value assigned to the variable by
the LP.

1) ILP Formulation: In this section, we present our ILP
formulation for the quadratic assignment problem. We give
a unique number to each node. For each node �, let �� 	
����� ���� ���� ���� denote the set of routers to which � can be
mapped.

Variables We define the following variables.

� Let ��
� denote a (0,1) integer variable that is set to 1
if node � is mapped to router � � ��, else 0. There are
 � 	
 	 variables of this type in the formulation.

� Let ��
�
�
� denote a (0,1) integer variable that is set to
1 if node � is mapped to router �, and node � is mapped
to router �, else 0. We define these variables only when

��� �� � � or ��� �� � �. Hence, there are �� � 	�	
variables of this type.

Objective Function The objective is to minimize the total
communication cost. It can be expressed as follows.

������ � (
�

��
���

�

����

�

����

��
�
�
� ���
�
�
�

where ��
�
�
� is the product of the bandwidth of the traffic for
edge ��� ��, and the Manhattan distance between routers � and
�. We can represent ��
�
�
� as

��
�
�
� 	 ��
� � �����
�

where ��
� is the bandwidth requirement of the edge ��� ��,
and �����
� is the Manhattan distance between routers � and �.

Note that the objective function is defined only for node
pairs that have an edge between them.

Constraints
� Each node should be mapped to exactly one router. This

constraint can be modeled as follows.

�� �
�
�

����

��
� 	 �

� The variable ��
�
�
� represents node � mapped to router
�, and node � mapped to router �. Therefore, if node � is
mapped to router �, all communication should take place
through that router. This condition is represented by the
following two equations.

���� �� � ���� � ���
�

����

��
�
�
� 	 ��
�

���� �� � ���� � ���
�

����

��
�
�
� 	 ��
�

C. Discussion

We show with the help of lemmas that a randomized
rounding technique can be successfully applied to obtain near
optimal solutions.

Lemma 1: The optimal solutions of the integer versions LP
and QP have the same cost.

Proof: Let us denote the integer versions of the problems
as ILP and IQP, respectively. We note that the ILP and IQP
solve the same problem, and therefore, the cost of their optimal
solutions will be the same.

Lemma 2: The expectation of the integer solution generated
by randomized rounding of the variables of the QP with
probability equal to the value of the variable in the solution
is equal to the cost of solution generated by QP.

Proof: Let the cost of the solution of QP be denoted as (�� ,
and the cost of the integer version of QP be denoted as (��� .
Consider an experiment of picking one router � among the
four routers placed in the corners of node �, with a probability
��
� . For an edge ��� �� � �, the cost of mapping nodes � and
� is given by

��(�
�
��� � 	

�

�

�

�

�& ���
� 	 ��
�

& ���� 	 ��
 ��
�
�
�

The overall expected cost of the solutions is given by

��(��� � 	
�

�
��

�

�

�

�

�& ���� 	 ��
�

& ���� 	 ��
��
�
�
�

Noting that the probabilities are independent and ��
� is set
to 1 with probability ��
� , we get

��(��� � 	
�

�
��

�

�

�

�

��
�
��
�
 ��
�
�
� 	 (��

The lemma proves that there is some feasible assignment
of the nodes to routers such that the cost of the solution and
that of the infeasible optimal solution obtained by relaxing
the integer constraints is the same. Let this optimal feasible
solution be represented by (���� . Let the cost of the LP be
denoted as (�� , and the cost of the ILP be denoted as (��� .
From the above argument, it follows that

(�� � (�� 	 (���� 	 (����

Lemma 3: Let (��� represent the cost of the solution
obtained by adding a constant % to the diagonals of matrix �
to make it positive semi-definite. Then, (�� � (���	
 	
%.

Proof: From Lemma 2,

(���� 	 (��

We also know that

(����� � (���

In the optimal integer solution, one and only one ��
� per
node � is set to one. The remaining variables are set to zero.
Therefore, (���� is minimized only when the first part of
the sum in the objective function is minimized. But the first
part represents (��� . Therefore,

(����� 	 (���� � %
 	
 	

Now, since (����� � (��� , and (���� 	 (�� , (�� �
(��� 	
 	
 %.

Therefore, we can solve for (��� in polynomial time, and
obtain a lower bound on (�� . From Lemma 2, this gives us
a lower bound on the expected value of the integer solution.
To obtain an integer solution with a cost given by the lower
bound, we utilize the randomized rounding technique.

1) Randomized rounding: Based on the LP formulation,
we present a randomized rounding algorithm using (�� as
a lower bound. The algorithm iteratively assigns routers to
nodes with probability given by the value of the corresponding
variable (��
�), until the number of iterations is maximum, or
an optimal solution is found. Once the exit criterion is satisfied,
the algorithm returns the best solution found thus far.

2) Merging routers: At the end of the floorplanning and
mapping phases, the architecture may have routers that are
placed very close to each other. In order to eliminate redundant
routers and also to reduce the complexity of the routing stage,
we merge pairs of routers that are less than a certain distance
apart. The distance is specified by the designer, and can be
set to the maximum permitted link length for single clock
cycle data transfer. Our merging algorithm checks all pairs of
available routers and merges two routers if
� the distance between them is less than the maximum

allowable distance under single clock cycle data transfer,
and

� merging the two routers does not cause a violation of the
single clock cycle data transfer for any other router.

D. Routing Technique

In this section, we present RT, a linear programming based
algorithm for routing communication traces such that the total
number of routers utilized in the topology is minimized. The
problem is a variation of the rectilinear steiner arborescence
problem which is known to be NP-Complete [17]. Our heuris-
tic models the problem as an LP formulation, and employs a
randomized rounding technique to arrive at the final solution.
In the following paragraphs, we discuss our technique in detail.

Variables: We define the following variables.
� Let ��
� denote a (0 1) variable that is set to 1 if the

router at location ��� �� is selected for routing.
� Let ��
�
� denote a (0 1) variable that is set to 1 if edge �

utilizes router at location ��� �� for routing. The number
of variables of this type is equal to the product of the
number of edges and the number of ��
� variables.

Objective: The objective is to minimize the number of
routers. The objective can be expressed as

������ � (
�

��
�

Constraints: For each edge in the CTG, consider a bounding
box on the layout defined by the location of the source and
sink nodes. The bounding box for the communication trace
specifies the routers that can be utilized for routing with the
shortest Manhattan path length. For edge �, let the bounding
box be denoted as)�.
� An edge in CTG always passes through the source and

sink routers. For edge �, let � denote the source node, and
� denote the sink node. Let the location of the router that
connects to � be (�� �), and the location of the router that
connects with � be (�� �). The following two equalities
must hold.

��
�
� 	 �� ��
�
� 	 �

� If a router at location ��� �� is utilized to route an edge
�, at least one of its adjacent routers that is closer to the
sink node, should also be utilized in the route. Assuming
that router ��
� is considered, and locations that take the
router close to sink are ��
���
�, and ����
�
�, we need
the following inequality.

��� � �)�� ��
���
� �����
�
� ��
�
� � �

SPR (tbd trace list)

for t � tbd trace list

for e � � /* For all physical links in � */

if (���� � ���� � �) /* BW violation */

edge weight(e) = � else edge weight(e) = 1

end if

end for

shortest path(�
 �
�)

end for

end
Fig. 11. Shortest path router

Benchmark Nodes Edges Power Routers
(��)

dsp 6 5 1686 2
263 encoder 7 7 2
mp3 encoder 8 8 3

mpeg4 12 13 5
mwd 12 13 3
vopd 12 13 5

mp3 enc mp3 dec 13 12
263 dec mp3 dec 14 12
263 enc mp3 enc 15 17
263 enc 263 dec 16 17 5

TABLE I

RESULTS

� If a router is utilized to route an edge, it should be present
in the final solution. Therefore,

�����
� � ��
�
�

The objective function makes sure that if a router is not
utilized in routing any edge, the corresponding ��
� will
be set to zero.

1) Randomized rounding technique: The randomized
rounding technique operates as follows. Initially, we solve
the LP, and fix all ��
� variables that are assigned a value 1.
Among the variables that have fractional values, we randomly
pick a variable, and assign it to 1 with a probability given by
the fractional value of the variable. The LP is solved again and
the randomized rounding step is repeated until all variables are
either set to 0 or 1.

At the end of the routing phase, there might be links that
violate bandwidth constraints. We un-map the traces with
minimum bandwidth requirement from these links, and re-
route them by invoking Dijkstra’s shortest path algorithm. The
re-routing technique is described in the following paragraph.

2) Shortest path router: The shortest path router (SPR) is
called for each traffic trace that is unmapped at the end of RT
phase. SPR attempts to find alternate routes for these traces.
For each trace in ��� ���#� ����, SPR sweeps all possible links
* of the physical layout grid. It assigns an edge weight of
� to all links that would see a bandwidth violation on the
ports constituting the links, if the trace was routed through
that link. These links are not utilized to generate the route for
the trace. This step is followed by calling Dijkstra’s shortest
path algorithm to find a route for the trace on the mesh.

IV. RESULTS

We present and analyze the experimental results obtained
by execution of our technique on representative multimedia
applications. We first discuss the benchmark applications, the

172.6
6.48

7392.18
993.6
2611.1

9.15
11.98
181.6
159.5

4
5
4

1

dsp upsp

mem2

au cpu rast

idct

riscbab

mem
3

190

0.5
910

0.5
60 600

32 670

40

600

250

500
193

mem

vu

Fig. 12. MPEG 4 decoder CTG

dct

rast

risc

mem

upsp

mem
1

vu
2

mem

cpu

au
bab

dsp

3

Fig. 13. Floorplan and
NoC architecture

experimental setup, and finally, we present and discuss the
results.

A. Benchmark applications

We generated custom NoC architectures for six combi-
nations of four multimedia benchmarks namely, mp3 audio
encoder, mp3 audio decoder, H.263 video encoder, and H.263
video decoder. The applications were obtained from the work
presented by Hu et al. [11]. In addition, we obtained results for
four other benchmarks namely, mpeg4 decoder, video object
plane decoder (vopd), multi-window display (mwd), and DSP
filter application (dsp). The mpeg4 decoder, vopd, and mwd
applications were obtained from [4], and the dsp application
was obtained from [9].

B. Experimental setup

We estimated the power consumption for the input and out-
put traffic of a port in 100 �� technology to be ����������
and �����������, respectively. We estimated the link power
consumption to be equal to ��������������. All results
were obtained on a 950 MHz dual sparc processor. We utilized
the XPRESS-MP solver [18] to generate our LP solutions.

C. Results and discussion

The LP formulations of CMT technique generated integer
solutions for all benchmarks. Since the solution generated by
LP is less than or equal to the that generated by the integer
version, we conclude that the integer solutions generated by
our CMT formulations are optimal. The solutions of the
RT formulation required at most 3 iterations of rounding to
generate the final design.

The results are presented in Table I. In the table, the first
column describes the benchmark application, the second and
third columns present the size of the benchmark in terms of
nodes and edges respectively, the fourth column presents the
power consumption of the NoC, and the fifth column presents
the number of routers in the solution. An LP formulation can
be solved in polynomial time, and in all our test cases, the LP
generated results in fraction of a second.

The communication trace graph for MPEG4 decoder is
shown in Figure 12. In the graph, the nodes denote processing
cores, and the edges are annotated by bandwidth requirement
in Mbps. Figure 13 shows the physical layout and NoC
architecture for the MPEG4 decoder application.

V. CONCLUSION

In this paper, we proposed a novel three phase automated
floorplanning and synthesis technique for generation of appli-
cation specific custom on-chip interconnection architectures.
Our technique utilizes a low complexity slicing tree based
floorplanner, and linear programming based techniques for
core to router mapping and routing of communication traces.
Our linear programming based techniques are able to generate
optimal results for node to router mapping stage. We demon-
strated that the complexity of our techniques is low, and as
stated in the results section, the techniques are able to generate
solutions in less than a second.

ACKNOWLEDGEMENT

The research presented in this paper was supported in
part by a grant from the National Science Foundation (IIS-
0308268) and Consortium of Embedded Systems

REFERENCES

[1] W. J. Dally and B. Towles. ”Route Packet, Not Wires: On-Chip
Interconnection Networks”. In Proceedings of DAC, June 2002.

[2] L. Benini and G. De Micheli. ”Networks on Chips: A New SoC
Paradigm”. IEEE Computer, pages 70–78, January 2002.

[3] M.B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald,
H. Hoffman, P. Johnson, J-W Lee, W. Lee, A. Ma, A. Saraf, M. Seneski,
N. Shnidman, V. Strumpen M. Frank, S. Amarasinghe, and A. Agrawal.
”The RAW Microprocessor: A Computational Fabric for Software
Circuits and General-Purpose Programs”. IEEE Micro, pages 25–35,
March-April 2002.

[4] A. Jalabert, S. Murali, L. Benini, and G. De Micheli. ”xpipesCompiler:
A tool for instantiating application specific Networks on Chip”. In
DATE, 2004.

[5] N. Banerjee, P. Vellanki, and K. S. Chatha . “A Power and Performance
Model for Network-on-Chip Architectures ”. In Proceedings of DATE,
Paris, France, February 2004.

[6] S. Murali, L. Benini, and G. De Micheli. ”Mapping and Physical
Planning of Networks-on-Chip Architectures with Quality-of-Service
Guarantees ”. In Proceedings of ASPDAC, 2005.

[7] R. Ravi, M. V. Marathe, S.S. Ravi, D. J. Rosenkrantz, H. B. Hunt III
. “Approximation Algorithms for Degree-Constrained Minimum-Cost
Network-Design Problems” . Algorithmica, 31(1):58–78, 2001.

[8] G. Ascia, V. Catania, and M. Palesi. ”Multi-objective Mapping for Mesh-
based NoC Architectures”. In Proceedings of ISSS-CODES, 2004.

[9] S. Murali, and G. De Micheli. ”Bandwidth-Constrained Mapping of
Cores onto NoC Architectures”. In DATE, 2004.

[10] J. Hu, and Radu Marculescu. ”Exploiting the Routing Flexibility for
Energy/Performance Aware Mapping of Regular NoC Architectures”.
In DATE, 2003.

[11] J. Hu and R. Marculescu. ”Energy-Aware Mapping for Tile-based NoC
Architectures Under Performance Constraints”. In ASP-DAC, 2003.

[12] A. Pinto, L. P. Carloni, and A. L. Sangiovanni-Vincentelli. ”Efficient
Synthesis of Networks On Chip”. In ICCD, 2003.

[13] Krishnan Srinivasan, and Karam S. Chatha. ”A Technique for Low
Energy Mapping and Routing in Network-on-Chip Architectures”. In
ISLPED, 2005.

[14] C.M Fiduccia and R.M Mattheyses. ”A Linear-Time Heuristic for
Improving Network Partitions ”. In Proceedings of DAC, 1982.

[15] M. Skutella. “Convex Programming and Semidefinite Programming
Relaxations in Scheduling”. Journal of the ACM, 48:206–242, 2001.

[16] Martin Grötschel, Laszlo Lovász, and Alexander Schrijver. Geometric
Algorithms and Combinatorial Optimization. Springer Verlag, 1988.

[17] W. Shi, and C. Su. “The Rectilinear Steiner Arborescence Problem is
NP-Complete”. In Proceedings of SODA, 2000.

[18] . “www.dashoptimization.com” . 2004.

