
Integer programming models for flat origami

Goran Konjevod

1 Introduction

Most traditional and many contemporary origami models fold flat, or at least
have flat-foldable crease patterns. Thus, it would be very useful to have a
complete mathematical description of flat-foldable origami. This has often
been stated as a major open problem in the mathematical foundations of
origami. There are three main mathematical properties of an origami: con-
tinuity, piecewise isometry, and noncrossing. Justin [7] proposed a set of
noncrossing axioms and claimed their validity was not only necessary but
sufficient for flat-foldability. His proof, however is not very formal and the
problem of whether they are sufficient has remained open. Recently, E. De-
maine [3] announced a positive answer to this question.

However, a mathematical description is of limited practical use unless it
is effective, that is, unless it comes with (preferably efficient) procedures for
practical manipulation of the objects it describes.

In case of flat-foldability, there are several types of questions an effective
model should be able to answer. The simplest is that of deciding flat fold-
ability of a crease pattern1: given a set of creases, with their orientations
(mountain or valley) assigned, is there a flat origami with exactly the given
creases taking on exactly the given orientations? Even this problem is un-
likely to have an efficient algorithm because it is NP-complete, as shown by
Bern and Hayes [1].

More general is the design problem: given a certain property required of
a flat origami, for example a given shape, or arrangement of flaps, or, for
duo-colored paper, a color-change pattern, is it possible to design such a flat

1In this paper, a crease pattern includes not only the location of every crease in the

model to be folded, but also the information on which creases are mountain and which

valley folds.

1

fold? Ideally, in the case of a positive answer, the solution should also include
a(n efficient) procedure to determine the crease pattern and the arrangement
of layers in such a model.

What makes these problems particularly difficult at the current state of
mathematical knowledge is that they are at the same time continuous and
discrete. There is a continuum of possible creases, and so it is not clear
how to model the problem using combinatorial techniques, which have been
developed for working with finite sets, and yet at the heart of the foldability
problem lies the combinatorial issue of arranging the layers correctly [1].

In order to bring the problem closer to what mathematics can currently
deal with, we restrict it to a special case, only considering folds in which
all the creases are either vertical, horizontal, or at a ±45 degree angle, and
each crease goes through a point of a fixed square grid (see Figure 1 for an
example). Even though the problem now becomes discrete, and may appear
simpler, the NP-completeness of flat-foldability remains.

We represent a flat origami by an integer linear program2 [10] (ILP). The
variables of the ILP will model both the creases and the arrangement of lay-
ers. If we then set the crease variables to predefined values, we get a specific
instance of the ILP whose feasible solutions represent exactly the ways to
flat fold the crease pattern. Thus flat-foldability of a crease pattern reduces
to deciding if the corresponding ILP instance has any solutions. We will also
show how certain properties (e.g. color-change) of an origami model can be
described by linear constraints. In this case, defining additional variables
and constraints, and setting them to desired values gives us an ILP instance
whose solutions will provide the necessary values for crease variables and
thus an answer to the design problem.

2 Integer programming model

2.1 Grids and creases

Original grid. We begin with a k by k square grid placed on the uncreased
square sheet of paper, and allow folding only on the segments of the grid and
the segments of diagonals of the grid squares (Figure 1). Additionally, we

2The word program is here used in the older sense of planning, as in mathematical

programming, and not in the sense of computer programming.

2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 1: The 2 by 2 square triangle grid.

allow at most one of the diagonals of each grid square to be folded (this
simplifies the model, and leads to no loss of generality).

The two diagonals in each grid square define four grid triangles. Due
to the restrictions on where creases lie, every grid triangle will be flat and
uncreased in the final folded state. We call these triangles the basic polygons.
Some parts of the ILP model described here depend directly on the fact that
the basic polygons are the grid triangles, but other parts of the model would
still work even if this were not the case. We use V to denote the set of all
basic polygons, and n for the number of elements in V , that is, |V | = n = 4k2.

Creases. For each pair of adjacent basic polygons, the segment separating
them may be a crease line. We define a graph based on this property, taking
V as the set of vertices and adding an edge between two vertices if the basic
polygons corresponding to these vertices are adjacent and separated by a
potential crease. We label the set of all edges by E.

Folded model. Just like we named the elements of the unfolded sheet of
paper by considering the grid of allowed creases, we must name the elements
of the folded model. It is not difficult to see that as long as we fold only on
the allowed creases, every basic polygon is folded into the location of another
basic polygon, possibly lying in a grid that extends beyond the boundaries
of the original sheet. This property simplifies the model, and is the main
reason to work with this particular triangle-square grid.

We will in general know the area covered by the folded model. For exam-
ple, if we are interested in figuring out how to fold something, the shape of
the folded model is naturally given as a parameter of the problem. On the

3

other hand, if we are testing the foldability of a crease pattern, we can easily
infer the location of each basic polygon from the crease pattern. (Indeed,
first we fix one basic polygon to be at a location of our choice in the folded
model. Everything else is done relative to this polygon. Then for each other
basic polygon we can trace a path along the grid segments from the one fixed
polygon, and account for each crease by changing the direction of the path
appropriately, until we reach the polygon of interest.)

Thus we name the set of locations where original basic polygons may lie
in the folded model: W , and the set of adjacent pairs of polygons in the
folded model: F .

2.2 Crease variables and constraints

In order to have a set of numbers describe a fold, we relate them to the
features of the fold. The easiest to understand are the crease variables. For
each crease segment e ∈ E, we have two variables, f v

e
and fm

e
. In a fold where

the segment e is (a part of) a valley fold, we have f v

e
= 1. In the case of a

mountain fold, fm

e
= 1. If the segment e is not folded, then f v

e
= fm

e
= 0.

It is clear that the inequality f v

e
+ fm

e
≤ 1 is always satisfied: if the

segment e is folded at all, it is either a mountain or a valley fold, but not
both. For each crease segment e we have such an inequality in our model.

2.3 Orientation and location constraints

If we are to describe a folded model, we need to know exactly where every
basic polygon is located after folding. Folding along a segment flips a part of
the sheet about the segment as the axis, turning the folded part of the sheet
upside-down and changing the location of every one of its basic polygons.
By examining each crease segment and checking whether it is folded, we
can figure out exactly where every basic polygon ends up after folding. To
describe the location of each polygon, we use location assignment variables.
Given a basic polygon v ∈ V of the unfolded grid and a basic polygon w ∈ W

of the folded model, we define x(v, w) to be 1 if v ends up at the same location
as w, and 0 otherwise. Since there are no cuts, every basic polygon of the
unfolded grid is still present in the folded model, and so it must be true that∑

w∈W
x(v, w) = 1 for every v ∈ V (that is, every basic polygon is mapped

somewhere).

4

This is not enough to describe the folded model, however. The basic
polygons are isosceles right triangles, and thus symmetric about the line
passing through their right angle vertex and dividing the hypothenuse in
half. Therefore, a basic polygon can be mapped to the same location in two
ways: its original top side may still be at the top after folding, or not. To
capture this, we use the variable σv for every v ∈ V . If the original top side
of v is still its top side, then σv = 0 (otherwise, σv = 1). We refer to σv also
as the orientation of v. Clearly for every v, either σv = 1 or σv = 0.

To understand the following sets of constraints, consider a grid segment
e. The orientations of its two defining polygons u and v depend on whether
e is folded or not. The next four constraints describe completely the relation
between the orientations σu, σv and the fold variables fm(u, v), f v(u, v):

σu − σv ≤ fm(u, v) + f v(u, v)

σv − σu ≤ fm(u, v) + f v(u, v)

σu + σv ≥ fm(u, v) + f v(u, v)

σu + σv ≤ 2 − fm(u, v) − f v(u, v).

Location is a little more difficult to characterize. However, the location
of a basic polygon is still determined completely by the location of any one of
its neighbors and by the value of their common crease variable. Say v, v′ ∈ V

are two neighboring basic polygons, sharing the grid segment e. Suppose v′

is mapped to the basic polygon w of the folded model, that is, x(v′, w) = 1.
Then stating that v is mapped to w is equivalent to stating that e is folded,
in other words, x(v, w) = f v(v, v′)+fm(v, v′). Here we have a condition that
says “x(v′, w) = 1 if and only if this equation holds”. Our goal is, of course,
to write all this as a linear equation. The key is to notice that if x(v′, w) = 0,
our constraint should require nothing. Here’s how to do this:

x(v, w) ≥ x(v′, w) + f v(v, v′) + fm(v, v′) − 1.

In other words, if both x(v′, w) and one of the fold variables are set to 1,
then x(v, w) will be forced to 1 as well. If one of the former is 0, then the
constraint will simply say x(v, w) ≥ 0, which is true anyway.

Of course, it is possible that the segment shared by v and v′ is not folded.
In that case, v and v′ will not be mapped to the same fold polygon, but to
adjacent ones. Which ones exactly, will depend on their orientation. The
constraints are somewhat more complicated for this case, and we will not
explain the details here.

5

Figure 2: The three crossing types.

2.4 Non-crossing constraints

The constraints described so far ensure that the locations of points in the
fold satisfy two of the three basic properties of flat origami: continuity and
isometry (no ripping or stretching of paper). The noncrossing property is
the one that actually makes the problem difficult, and will also cause us the
most trouble.

Assuming the Justin axioms (see Introduction for background), there are
three types of crossings that a flat-foldable origami avoids, as illustrated in
Figure 2: we refer to them by mnemonics W, X and Y.

In our simplified version, where all folds lie along the square-triangle
grid, any imaginable crossing would happen along a grid segment as well,
so as with orientation and location, it suffices to enforce non-crossing for
pairs of adjacent basic polygons in the grid of the folded model. Consider
a flat-folded model. At any point, there may be several layers of paper one
below the other. Number them from the bottom, starting from 1. Do this
independently for each basic polygon of the fold grid, and we will have for
every polygon in the fold an ordering of all the polygons mapped to it by the
fold. We next show how to force the integer program to assign layers to basic
polygons in the, and then it will be clear how to complete the constraint set,
because it is not difficult to express the non-crossing constraints in terms
of layers. (The same idea is used by Jonathan Schneider [9] who calls it
superposition ordering in order to describe properties of flat-foldable crease
patterns.)

For example, suppose w and w′ are two neighboring polygons in the fold.
Say two neighboring basic polygons, v and v′, are mapped to w. They share
a grid segment e. Suppose f is the segment of the fold grid to which e is
mapped and w′ the fold polygon adjacent to w but on the other side of f .
If another basic polygon z is mapped to w and lies between v and v′ in the
fold (that is, it is at a layer between the layers of v and v′), then there will
be a non-crossing constraint of type Y that will say that it is impossible for
a neighbor of z to be mapped to w′.

6

Layering constraints. We first make sure that every basic grid polygon
is assigned to a layer: ∑

k∈L

λ(v, w, k) = x(v, w),

for all v ∈ V and w ∈ W , where L is the set of all possible layers (that is,
the set of numbers {1, 2, . . . , Lmax} for some large enough Lmax). What the
constraint really says is that if v is mapped to w by the fold, then it lies at
some layer over w. The value of the variable λ(v, w, k) is 1 if v lies at layer
k over the fold polygon w, and 0 otherwise.

Then we make sure that layers fill up starting from the bottom by requir-
ing that if layer k is empty, then so are all the layers above it:

∑

v∈V

λ(v, w, k) ≤
∑

v∈V

λ(v, w, k − 1),

for all w ∈ W and k > 1.
Finally, we make sure that at each layer there is at most one polygon:

∑

v∈V

λ(v, w, k) ≤ 1,

for all k and all w ∈ W .
Now we can compute the layer at which a polygon v lies. First, let

l(v, k) = 1 if v is at layer k, and l(v, k) = 0 otherwise. Then we have

λ(v, w, k) ≤ l(v, k)

λ(v, w, k) ≥ x(v, w) + l(v, k) − 1.

In order to write constraints that compare layers of different basic poly-
gons, we use the variable llv to be the exact layer of the basic polygon v.
This value can be expressed directly in terms of l:

llv =
∑

k∈L

k · l(v, k).

In comparing the layers we do not care about their values, only about the
sign of their difference. We use α(u, v) to denote whether the polygon u lies
above polygon v (that is, whether llu > llv). First, no polygon can lie above
itself:

α(v, v) = 0,

7

for all v ∈ V . Then, if u is above v then v cannot be above u:

α(u, v) + α(v, u) ≤ 1,

for all u, v ∈ V . Finally, we define α in terms of ll:

α(u, v) ≥
llu − llv

Lmax

.

This suffices to establish an ordering among the polygons mapped to the
same location, but additional constraints may be useful. What happens when
the model is used to solve a problem is that a complicated algorithm examines
many possibilities for assigning the 0-1 values to the variables of the model,
and attempts to eliminate inconsistent assignments as efficiently as possible.
Additional constraints usually help in such a situation, and therefore in the
actual implementation of the model we also enforce other constraints that
relate the ordering constraints to orientation and location constraints.

3 Example and conclusion

Due to limited space, we do not enumerate all the constraints. The complete
integer programming model (written in the modeling language AMPL [5])
can be found on the author’s web page.

The appendix is a short example showing how the model can be used.
The simplest approach is to list additional constraints that are to be enforced
in order to model an actual fold. The given example gives the crease pattern
illustrated in Figure 3 of the iso-area 2 by 2 chessboard folded from a 4 by 4
square.

This example is very simple, however the current version of the model
results in a very large integer program even for this small crease pattern,
and takes several hours to solve on a reasonably fast computer (an AMD64-
based machine). The model can undoubtedly be improved and made more
tractable. This is usually done by a careful examination of constraints. Some
types of linear constraints (such as the one we used to define a lower bound on
α(u, v)) are computationally awkward, in that they cause the integer program
solver to generate too many cases that all have to be solved. It doesn’t seem
obvious how to replace these constraints by better ones, but there are very
likely additional inequalities that will reduce the search space. Schneider

8

Figure 3: The 2 by 2 iso-area chessboard crease pattern.

describes several necessary conditions for flat foldability, some of which do
not follow immediately from our location and orientation. It may be possible
to derive further inequalities based on these conditions and thus make the
solver’s job easier. A simple improvement for the foldability problem (but
not for the design problem) would be to precompute all the point locations
and then have the integer program “only” test if there is a valid layering.

This work was motivated by attempts to prove bounds on the size of a k

by k chessboard that can be folded out of a unit square of black-and-white
paper. Hulme’s chessboard [6] was the first one, giving an 8 by 8 board from
a 64 by 64 square, with a “reduction factor” of 8. Montroll’s board [8] uses
a 36 by 36 square, and those of Chen [2] and Dureisseix [4] 32 by 32, for a
reduction factor of 4. It is conjectured that the latter two are optimal, that
is, that an 8 by 8 board with correctly colored squares cannot be folded from
a square smaller than 32 by 32. (In general, according to this conjecture, a k

by k board would require a reduction factor of 2k in the even case.) For now,
our work leaves this question open. As far as we can tell, even for folding a
4 × 4 chessboard, there are no rigorous proofs that our current best designs
(out of 8 × 8 square grid, or 10 × 10 for a seamless design) are optimal.

9

Appendix: additional constraints for the 2 by 2 iso-area board

set Valley within E:={(11,13), (16,30), (19,21), (27,29),

(35,37), (36,50), (43,45), (51,53)};

set Mountain within E:={(3,5), (4,18), (8,22), (12,26),

(40,54), (44,58), (48,62), (59,61)};

subject to valleys{(a,b) in E: (a,b) in Valley or (b,a) in Valley}:

fv[a,b] = 1;

subject to mountains{(a,b) in E: (a,b) in Mountain or

(b,a) in Mountain}: fm[a,b] = 1;

subject to ss: s[1] = 1;

subject to flat{(a,b) in E: not((a,b) in Valley union Mountain)

and not((b,a) in Valley union Mountain)}: fv[a,b] + fm[a,b] = 0;

10

References

[1] M. Bern and B. Hayes. The complexity of flat origami. In Proceedings of

the 7th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
175–183, 1996.

[2] S. Chen. Checkerboard. In Proceedings of the Annual OUSA Conven-

tion, pages 72–75, 2001.

[3] E. D. Demaine. Personal communication, 2006.

[4] D. Dureisseix. Chessboard. Unpublished diagram, 2001.

[5] R. Fourer, D. M. Gay, and B. W. Kernighan. A modeling language for
mathematical programming. Management Science, 36:519–554, 1990.

[6] M. Hulme. BOS Booklet 7: Chess Sets. BOS, 1985.

[7] J. Justin. Towards a mathematical theory of origami. In Origami Science

and Art: Proceedings of the Second International Meeting of Origami

and Scientific Origami, pages 15–29, 1997.

[8] J. Montroll. Origami Inside-Out. Dover, 1993.

[9] J. Schneider. Flat-foldability of origami crease patterns. Manuscript,
2005.

[10] A. Schrijver. Theory of integer and linear programming. Wiley, 1986.

11

