Given: A graph $G = (V, E)$, edges weighted by c, where c satisfies triangle inequality

$$c(x, y) + c(y, z) \geq c(x, z)$$

and V is partitioned as

$$V = R \cup S$$

($R =$ required vertices, *terminals*; $S =$ *Steiner vertices*),

Find: A minimum-weight tree that spans all of R (and possibly some of S).
Triangle inequality implies G is complete (if G is not complete, we may still make it so for the purpose of this problem by using instead its metric completion: for every pair of vertices u, ν, add an edge of weight $d(u, \nu)$, where d is the length of the shortest path between u and ν.

NP-hard optimization problem

Problem goes back to Gauss (early 19th century)

Often considered in the Euclidean plane; then, R only given, S implicitly all the vertices of the plane
Note: sometimes the Steiner points are actually necessary.
Since G is complete, we can try to ignore the Steiner points:

Algorithm: Find a minimum spanning tree on R, use this as an “approximate” Steiner tree.

How good (or bad) is this?
Double every edge of the tree.

(Note: the image shows Steiner vertices in the tree; this may happen if, as mentioned above, we had to form the metric completion of the original input graph.)

This graph has all even degrees; find an Eulerian tour (possible in time $O(n)$).

The cost of the tour: $\leq 2 \cdot \text{OPT}$.

Now find a Hamilton tour of R by shortcutting around vertices of S in the tree and previously visited vertices of R.
The cost of the Euler tour $\leq 2 \cdot \text{OPT}$.

Shortcuts around previously seen vertices and Steiner points can only decrease the cost because of triangle inequality, thus the cost of the Hamilton tour is still at most $2 \cdot \text{OPT}$. Removing the longest edge of the Hamilton tour gives a Steiner tree of cost at most $2 \cdot \text{OPT}$ (actually, at most $2(1 - 1/k) \cdot \text{OPT}$, where $k = |R|$...).
The analysis is actually tight. (Example?)

More complicated algorithms can improve the approximation guarantee to $11/6$ (instead of 2) [Zelikovsky]

Best known guarantees:

- for the general graph problem: roughly $5/3$ ($3/2$ is the goal, but seems unreachable right now)
- if the terminals are in the Euclidean plane, $1 + \epsilon$ is possible for any $\epsilon > 0$ (we'll see this later in the course)
Given: A graph $G = (V, E)$, edges weighted by c, where c satisfies triangle inequality

$$c(x, y) + c(y, z) \geq c(x, z)$$

Find: A minimum-weight cycle that visits every vertex exactly once.

Note:

- Solution exists because G is wlog complete
- If no triangle inequality, no approximation ratio is possible unless P=NP. (Proof sketch on the board.)
Spanning tree heuristic

1. Find an MST T of G.
2. Double every edge to get an Eulerian graph.
3. Find an Euler tour \mathcal{T} on this new graph.
4. Output the tour that visits vertices of G in order of their first appearance in \mathcal{T}. Let \mathcal{C} be this tour.

Claim: The above is a 2-approximation algorithm for metric TSP.
MST approximation to TSP: analysis

The same argument as for the Steiner tree problem:

1. \(\text{cost}(T) \leq \text{OPT} \) (Take an optimal TSP tour, remove an edge, giving an MST of smaller cost.)
2. \(\text{cost}(T) \leq 2\text{OPT} \)
3. Shortcutting gives \(\text{cost}(C) \leq 2\text{OPT} \).

Tight example?
Where do we lose factors in the analysis?

Answer: Making an Euler tour from T takes a factor of 2 immediately.

Note: ANY Eulerian graph built on top of T would work!

So: Can we find a cheaper Eulerian graph containing T?
Eulerian condition: every degree is even.

So: find a minimum-weight graph that increases by one the degree of every odd-degree vertex.

In other words, this is called?

Find a minimum-weight matching on the set of odd-degree vertices of T!
Christofides’ algorithm

1. Find an MST T of G.
2. Find a minimum-weight matching on the set of odd degree vertices of T, and add the matching edges to T.
3. Find an Euler tour \mathcal{T} on this new graph.
4. Output the tour that visits vertices of G in order of their first appearance in \mathcal{T}. Let C be this tour.

Claim: The above is a $3/2$-approximation algorithm for metric TSP.
Christofides’ approximation to TSP: analysis

The same argument as before:

1. \(\text{cost}(T) \leq \text{OPT} \) (Take an optimal TSP tour, remove an edge, giving an MST of smaller cost.)

2. \(\text{cost}(T) \leq \frac{3}{2} \text{OPT} \)

3. Shortcutting gives \(\text{cost}(C) \leq \frac{3}{2} \text{OPT} \).

The missing piece: The minimum-weight perfect matching on the set of odd-degree vertices of \(T \) has weight \(\leq \text{OPT}/2 \).

Argument: on the board.