
Types of randomized algorithms

Monte Carlo

running time is deterministic

correctness is a random variable

example: minimum cut

Las Vegas

always correct

running time is a random variable

example: quicksort



Errors and certainty (1)

Success probability amplification: run the Monte Carlo algorithm
repeatedly many times.
If one run succeeds with probability ≥ 1/2, then with probability
≥ 1− 1

2k at least one out of k independent runs succeeds.



Transformation

Monte Carlo −→ Las Vegas
Suppose that the algorithm succeeds with probability ≥ 1/2 and
we can efficiently verify the correctness of a solution.
Run the Monte Carlo algorithm repeatedly, until it succeeds.
The expected number of iterations is at most 2.



Markov’s inequality

Let X be a random variable that takes only nonnegative values.
Then,

Pr[X ≥ kEX ] ≤ 1

k
.



Chebyshev’s inequality

Let X be a random variable. VarX = E[(X − EX )2]. Then,

Pr[|X − EX | ≥ t
√

VarX ] ≤ 1

t2
.

(Proof: apply Markov’s inequality to the r.v. Y = (X − EX )2.)



Example: binomial r.v.

Xn = the number of heads in n tosses of a fair coin.

EXn = n · Pr[heads] =
n

2
.

VarX1 =
1

4
,VarXn =

n

4
.

(variance of sum = sum of variances for independent r.v.)
For an unfair coin (Pr[heads] = p),

EXn = np, VarXn = np(1− p).



Randomized selection

Input: set S of n numbers, integer k ≤ n.
Output: the k-th smallest element S(k) of S .



Idea:

Sample S to get a smaller subset P, then find the right element in
P.

With high probability, S(k) ∈ P.

P is not very large so sorting it is not too expensive.



Randomized selection

Input: set S of n numbers, integer k ≤ n.
Output: the k-th smallest element S(k) of S .

1 Select n3/4 elements of S uniformly with replacement → R.

2 Sort R in time O(n3/4 lg n).

3 Let a = R(l) and b = R(h), where l , h = k
n1/4 ±

√
n.

4 Let P be the elements of S between a and b.
If S(k) 6∈ P, or if |P| > 4n3/4 + 2, repeat steps 1–3.

5 Sort P, output S(k) = P(k−rS (a)+1).



Case 1: n1/4 < k < n − n1/4

P = {y ∈ S | a ≤ y ≤ b}.

Theorem

With probability 1− O(n−1/4), S(k) is found in the first pass and
thus only 2n + o(n) comparisons are made.



Randomized selection analysis (1)

If only one pass, only 2n + o(n) comparisons.
Failure modes:

a too large: a > S(k).

b too small: b < S(k).

P too large: |P| > 4n3/4 + 2.



Failure mode 1: a > S(k)

a = R(l).
S(k) 6∈ P iff not enough samples in R are ≤ S(k).
Let Xi = 1 if the i-th random sample is ≤ S(k), 0 otherwise.
Then Pr[Xi = 1] = k/n. Let X =

∑
i Xi .

Now EX = k
n1/4 and

VarX = n3/4(k
n )(n−k

n ) ≤ n3/4

4 .
Using Chebyshev’s inequality:

Pr[|X −EX | ≥
√

n] = Pr[|X −EX | ≥ (2n1/8)(n3/8/2)] = O(
1

n1/4
).



Failure mode 2: b < S(k)

Symmetric to failure mode 1. Pr[b < S(k)] = O( 1
n1/4 ).

Now probability that we fail in either of the two ways is at most
O( 1

n1/4 ) + O( 1
n1/4 ) = O( 1

n1/4 ).



Failure mode 3: |P | > 4n3/4 + 2

Similar to the other two cases.



Random select: remarks

expected running time is 2n + o(n).

best known deterministic algorithm: 3n worst case

deterministic algorithms cannot do better than 2n

randomized algorithm can be improved to
n + min{k , n − k}+ o(n)



Coupon collector’s problem

Start with n empty bins.
Random process: in each step, a ball is placed randomly in one of
the bins.
How long until all the bins are full?



Coupon collector: modeling

X = the number of steps untill all bins are full.
Define random variables properly:
X0 = number of steps until 1 bin is full,
X1 = number of steps after 1 bin is full, until 2 bins are full,
. . .
Xi = number of steps after i bins are full, until i + 1 bins are full.
(Epochs 1, 2, . . . , n.)
Now,

X = X0 + X2 + · · ·+ Xn−1.



Coupon collector: expectation

Let pi = probability that the (i + 1)-th bin is filled in any step in
i-th epoch.
Then,

pi =
n − i

n
.

EXi =
1

pi
=

n

n − i
.

EX =
n−1∑
i=0

EXi =
n−1∑
i=0

n

n − i
= n

n∑
i=1

1

i
= nHn.


