
CSE 591 Randomized and Approximation
Algorithms

Goran Konjevod

Department of Computer Science and Engineering
Arizona State University

ASU, Fall 2008

Logistics 1

Instructor: Goran Konjevod, BY450, goran@asu.edu

Office Hours: TTh 13:30–15:00

TA: Melih Onus, monus@asu.edu

Office Hours: TBA

Logistics 2: Evaluation

Homeworks (6–7): 30%

Midterm (early November): 30%

Project: 40%

Randomization

Leaving decisions to chance.

Randomized algorithm: allowed to invoke a random event and use
the outcome to determine the next step.

Basic random events:

1 Basic: generate a random bit

2 Complex: generate a random number (int/float)

3 Complex: generate a random object of some general type

Uses of randomization

Randomization may

make complicated algorithms simpler

make inefficient computations efficient (quicksort, mincut)

make possible things we don’t know how to do
deterministically (primality testing in P, matching in parallel)

make possible things that are provably impossible to do
deterministically (volume computation, distributed protocols)

Example: quicksort

Input: set S of numbers.
Output: the elements of S sorted in increasing order.

1 Choose y ∈ S uniformly at random.

2 S1 = {x ∈ S | x < y}, S2 = {x ∈ S | x > y}.
3 Recursively sort S1 and S2.

4 Output sorted S1, followed by y , followed by sorted S2.

Randomized quicksort analysis

Let s1 ≤ s2 ≤ . . . ≤ sn be the set S in order.
Let

Xij =

{
1 si is compared to sj
0 si is not compared to sj

Number of comparisons made is Tn =
∑n

i=1

∑
j>i Xij .

Digression: discrete probability (1)

Sample space: set Ω of all possible outcomes (quicksort: the set of
all possible runs of the algorithm on input S)
Events: subsets of Ω (example: let x be an element of S . The set
Ax of all possible runs where the first element selected is x)
Probability of an event (Pr[Ax] = 1/n).
Random variable: mapping from Ω to real numbers (Xij).
Expectation of a random variable: its “average value”,

E[X] =
∑
ω∈Ω

Pr[ω] · X (ω)

(E[Xij] = Pr[Xij = 1] · 1 + Pr[Xij = 0] · 0 = Pr[Xij = 1]).

Digression: discrete probability (2)

Expectation is linear: for random variables X and Y , numbers a, b,

E[aX + bY] = aE[X] + bE[Y].

Example: in randomized quicksort,

E[Tn] = E[
n∑

i=1

∑
j>i

[Xij]

=
n∑

i=1

∑
j>i

E[Xij]

=
n∑

i=1

∑
j>i

Pr[Xij = 1].

Randomized quicksort analysis

Xij = 1 if and only if si and sj are compared.
When are si and sj compared?

Exactly if either si or sj is selected before any of the elements
si , si+1, . . . , sj−1, sj .

The probability of this happening is 2/(j − i + 1).

Randomized quicksort analysis

E[Tn] =
n∑

i=1

∑
j>i

Pr[Xij = 1] =
n∑

i=1

∑
j>i

2

j − i + 1

≤
n∑

i=1

n−i+1∑
k=1

2

k

≤ 2
n∑

i=1

n∑
k=1

1

k
≤ 2nHn = O(n ln n).

Cuts in graphs

A cut in G : a set of edges that disconnects the graph.
For a set C ⊆ V , let C = V \ C . Then (C , C) defines a cut. We
write

(C , C) = {uv ∈ E | u ∈ C , v ∈ C}.

Minimum cut problem

Input: (multi)graph G = (V , E).
Output: a cut of minimum cardinality in G .

Polynomially solvable, O(n3) time (but not simple). Need n
minimum st-cuts or the Stoer-Wagner algorithm.

Simple randomized algorithm for mincut

1 Pick an edge e uniformly at random.

2 Contract e.

3 Repeat until there are only two vertices left.

Randomized mincut analysis (1)

Claim: Contractions do not decrease the minimum cut value.

Randomized mincut analysis (2)

Let k be the minimum cut cardinality. Let C be a minimum cut.

G has at least kn/2 edges.

For i = 1, . . . , n − 2, let Ai be the event that no edge of C was
contracted in the i-th step.

If all of the events A1, . . .An−2 happen, then the algorithm finds
the minimum cut C .

Randomized mincut analysis (3)

Pr[A1] ≥ 1− 2

n
=

n − 2

n
.

If A1 happens, then before the second step of the algorithm there
are at least k(n − 1)/2 edges in the graph.

Pr[A2 | A1] ≥ 1− 2

n − 1
=

n − 3

n − 1
.

In general, if A1, . . . ,Ai−1 happen, then before the i-th step there
are at least k(n − i + 1)/2 edges in the graph and so

Pr[Ai | A1, A2, . . . Ai−1] ≥ 1− 2

n − i + 1
=

n − i − 1

n − i + 1
.

Randomized mincut analysis (4)

The probability that no edge of C is contracted is

Pr[A1 ∩ A2 ∩ · · · ∩ An−2]

Digression: discrete probability (3)

Two events A and B are independent, if

Pr[A ∩ B] = Pr[A] Pr[B].

The conditional probability of A given B is defined by

Pr[A | B] =
Pr[A ∩ B]

Pr[B]
.

For any two events A, B, we have

Pr[A ∩ B] = Pr[A | B] · Pr[B].

In general,

Pr[A1∩A2∩· · ·∩Ak] = Pr[Ak | A1∩· · ·∩Ak−1] · · ·Pr[A2 | A1]·Pr[A1].

Randomized mincut analysis (5)

The probability that no edge of C is contracted is

Pr[A1 ∩ A2 ∩ · · · ∩ An−2] ≥ n − 2

n
· n − 3

n − 1
· n − 4

n − 2
· · · 3

5
· 2

4
· 1

3

=
2

n(n − 1)
.

Randomized mincut analysis (6)

The probability that C is output by the algorithm is at least 2/n2.

Suppose we repeat the algorithm n2/2 times, each time with new
independent random choices.

The probability that C is not found in any of the n2/2 runs is then
at most

(1− 2

n2
)n2/2 <

1

e
.

Improved randomized minimum cut (1)

So far: an O(n2m) algorithm for mincut.
To improve, notice that earlier steps are safer than later ones.

How far can we go until the probability of having lost C is 1/2?
If there are about n/

√
2 vertices left, the success probability is at

least

n − 2

n
· n − 3

n − 1
· · · n/

√
2− 2

n/
√

2
=

(n/
√

2− 3)(n/
√

2− 2)

n(n − 1)
,

that is, roughly
1

2
.

Improved randomized minimum cut (2)

Now think of these first n − n/
√

2 steps as a single experiment!
Its outcome is either success or failure, and the probability of
success is at least 1/2.

Perform this experiment twice, then if one of the two runs
succeeded, recurse.

Build a binary tree to describe the process.
Depth = 2 lg n, number of leaves = n2.
If each edge is erased independently with probability 1/2, what is
the probability that a root-leaf path survives?

Improved randomized minimum cut (3)

If Pd is the probability a path survives in a tree of depth d , then

Pd =
1

2
Pd−1 +

1

4
(1− (1− Pd−1)2)

=
1

2
Pd−1 +

1

4
(2Pd−1 − (Pd−1)2)

= Pd−1 −
1

4
(Pd−1)2.

Now if Pd−1 > 1
d−1 , then

Pd >
1

d − 1
− 1

4(d − 1)2
>

1

d − 1
− 1

d(d − 1)
=

1

d
.

So the probability a path survives is Ω(1
log n).

To make this a constant, repeat independently log n times.

Improved randomized minimum cut (4)

What is the running time of a single “tree” process?
T (n) = O(n2) + 2T (n/

√
2) = O(n2 lg n).

The total running time of the improved version is then O(n2 lg2 n).

