
CSE 555 Theory of Computation Class 8 (2/7)

Goran Konjevod

Department of Computer Science and Engineering
Arizona State University

ASU, Spring 2008



Context-free languages

Regular language definitions:

accepted by DFAs

represented by R.E.s

generated by regular grammars



What is a regular grammar?

1 Finite alphabet: Σ = {a1, . . . , am}
2 Finite set of variables: V = {S ,A1,A2,A3, . . . ,An}
3 Finite set of rules: Ai → ajAk or Ai → aj .
4 Generative process:

1 Starting from string “S”,
2 Repeatedly transform the current string by applying rules
3 Stop when the string consists only of symbols from Σ

(terminals)

A grammar generates a language.



Regular grammars and regular languages

Any regular grammar generates a regular language.
Any regular language can be generated by a regular grammar.

(Proof: a direct correspondence between reg. grammars and
NFAs.)



More general grammars

1 Finite alphabet: Σ = {a1, . . . , am}
2 Finite set of variables: V = {S ,A1,A2,A3, . . . ,An}
3 Finite set of rules.
4 Generative process:

1 Starting from string “S”,
2 Repeatedly transform the current string by applying rules
3 Stop when the string consists only of symbols from Σ

(terminals)

A grammar generates a language.



Context-free grammars (CFG)

1 Finite alphabet: Σ = {a1, . . . , am}
2 Finite set of variables: V = {S ,A1,A2,A3, . . . ,An}
3 Finite set of rules: Ai → u, u ∈ (Σ ∪ V )∗.
4 Generative process:

1 Starting from string “S”,
2 Repeatedly transform the current string by applying rules
3 Stop when the string consists only of symbols from Σ

(terminals)

A grammar generates a language.



Context-sensitive grammars (CSG)

1 Finite alphabet: Σ = {a1, . . . , am}
2 Finite set of variables: V = {S ,A1,A2,A3, . . . ,An}
3 Finite set of rules: uAv → uxv , u, v ∈ (Σ ∪ V )∗ and

x ∈ (Σ ∪ V )+, or the rule S → ε.
4 Generative process:

1 Starting from string “S”,
2 Repeatedly transform the current string by applying rules
3 Stop when the string consists only of symbols from Σ

(terminals)

A grammar generates a context-sensitive language.
(Alternative definition: for every non-zero rule, the right-hand side
is at least as long as the left-hand side.)



General grammars

1 Finite alphabet: Σ = {a1, . . . , am}
2 Finite set of variables: V = {S ,A1,A2,A3, . . . ,An}
3 Finite set of rules: uAv → x , u, v , x ∈ (Σ ∪ V )∗.
4 Generative process:

1 Starting from string “S”,
2 Repeatedly transform the current string by applying rules
3 Stop when the string consists only of symbols from Σ

(terminals)

The class of languages: recursively enumerable languages.



Examples

CFG for L1 = {w ∈ {a, b}∗ | na(w) = nb(w)}?

CFG for L2 = {w ∈ {a, b}∗ | na(w) ≤ nb(w)}?

CFG for L3 = {w ∈ {a, b}∗ | na(w) = 2nb(w)}?

CFG for L4 = {w ∈ {a, b}∗ | nb(w) ≤ na(w) ≤ 2nb(w)}?

CFG for L5 = {w ∈ {a, b}∗ | nb(w) < na(w) ≤ 2nb(w)}?



The parsing problem

Given a grammar G and a string u, is u derivable from G?

Idea: try to explore all possible derivations.
Problem: we don’t know when to stop and report “No.”

Idea: simplify the grammar so that this becomes easy.
Solution: reduce G to Chomsky normal form.



Chomsky normal form (CNF)

A CFG G is in Chomsky normal form, if all its rules have one of
these forms:

A → BC

A → a

S → ε

Every CFG has an equivalent CNF grammar.



Chomsky normal form reduction

1 Add new start symbol S0 and the rule S0 → S . (S0 will never
occur on the right-hand side.)

2 Remove A → ε for A 6= S . For each rule R → uAv , add
R → uv . (E.g. R → uAvAw results in R → uAvw and
R → uvAw and R → uvw .)
If there was a rule R → A, add R → ε unless we’ve removed
such a rule already.

3 Repeat previous step until no more ε-rules (except S → ε.)

4 Replace A → u1u2 · · · uk , k ≥ 3 with the rules A → u1A1,
A1 → u2A2, . . ., Ak−2 → uk−1uk . In any new rule
Ai → ui+1Ai+1, replace ui+1 by variable Ui+1 and add rule
Ui+1 → ui+1.


