CSE 555 Theory of Computation Class 8 (2/7)

Goran Konjevod

Department of Computer Science and Engineering Arizona State University

ASU, Spring 2008

Regular language definitions:

- accepted by DFAs
- ${\scriptstyle \bullet}$ represented by R.E.s
- generated by regular grammars

- Finite alphabet: $\Sigma = \{a_1, \ldots, a_m\}$
- **2** Finite set of variables: $V = \{S, A_1, A_2, A_3, \dots, A_n\}$
- Generative process:
 - Starting from string "S",
 - ② Repeatedly transform the current string by applying rules
 - Stop when the string consists only of symbols from Σ (terminals)
- A grammar generates a language.

Any regular grammar generates a regular language. Any regular language can be generated by a regular grammar.

(Proof: a direct correspondence between reg. grammars and NFAs.)

- Finite alphabet: $\Sigma = \{a_1, \ldots, a_m\}$
- **2** Finite set of variables: $V = \{S, A_1, A_2, A_3, \dots, A_n\}$
- Finite set of rules.
- Generative process:
 - Starting from string "S",
 - ② Repeatedly transform the current string by applying rules
 - Stop when the string consists only of symbols from Σ (terminals)
- A grammar generates a language.

- Finite alphabet: $\Sigma = \{a_1, \ldots, a_m\}$
- **2** Finite set of variables: $V = \{S, A_1, A_2, A_3, \dots, A_n\}$
- **③** Finite set of rules: $A_i → u$, $u ∈ (Σ ∪ V)^*$.
- Generative process:
 - Starting from string "S",
 - ② Repeatedly transform the current string by applying rules
 - Stop when the string consists only of symbols from Σ (terminals)
- A grammar generates a language.

Context-sensitive grammars (CSG)

- Finite alphabet: $\Sigma = \{a_1, \ldots, a_m\}$
- **2** Finite set of variables: $V = \{S, A_1, A_2, A_3, \dots, A_n\}$
- Solution Finite set of rules: $uAv \rightarrow uxv$, $u, v \in (\Sigma \cup V)^*$ and $x \in (\Sigma \cup V)^+$, or the rule $S \rightarrow \epsilon$.
- Generative process:
 - Starting from string "S",
 - **②** Repeatedly transform the current string by applying rules
 - Stop when the string consists only of symbols from Σ (terminals)

A grammar generates a context-sensitive language. (Alternative definition: for every non-zero rule, the right-hand side is at least as long as the left-hand side.)

- Finite alphabet: $\Sigma = \{a_1, \ldots, a_m\}$
- **2** Finite set of variables: $V = \{S, A_1, A_2, A_3, \dots, A_n\}$
- Solution Finite set of rules: $uAv \rightarrow x$, $u, v, x \in (\Sigma \cup V)^*$.
- Generative process:
 - Starting from string "S",
 - Provide the string of the string by applying rules
 - Stop when the string consists only of symbols from Σ (terminals)

The class of languages: recursively enumerable languages.

CFG for
$$L_1 = \{w \in \{a, b\}^* \mid n_a(w) = n_b(w)\}$$
?
CFG for $L_2 = \{w \in \{a, b\}^* \mid n_a(w) \le n_b(w)\}$?
CFG for $L_3 = \{w \in \{a, b\}^* \mid n_a(w) = 2n_b(w)\}$?
CFG for $L_4 = \{w \in \{a, b\}^* \mid n_b(w) \le n_a(w) \le 2n_b(w)\}$?
CFG for $L_5 = \{w \in \{a, b\}^* \mid n_b(w) < n_a(w) \le 2n_b(w)\}$?

Given a grammar G and a string u, is u derivable from G? Idea: try to explore all possible derivations. Problem: we don't know when to stop and report "No." Idea: simplify the grammar so that this becomes easy. Solution: reduce G to Chomsky normal form. A CFG G is in Chomsky normal form, if all its rules have one of these forms:

 $A \to BC$ $A \to a$ $S \to \epsilon$

Every CFG has an equivalent CNF grammar.

Chomsky normal form reduction

- Add new start symbol S_0 and the rule $S_0 \rightarrow S$. (S_0 will never occur on the right-hand side.)
- Remove A → e for A ≠ S. For each rule R → uAv, add R → uv. (E.g. R → uAvAw results in R → uAvw and R → uvAw and R → uvW.)
 If there was a rule R → A, add R → e unless we've removed such a rule already.
- **③** Repeat previous step until no more ϵ -rules (except $S \rightarrow \epsilon$.)
- Replace $A \rightarrow u_1 u_2 \cdots u_k$, $k \ge 3$ with the rules $A \rightarrow u_1 A_1$, $A_1 \rightarrow u_2 A_2$, ..., $A_{k-2} \rightarrow u_{k-1} u_k$. In any new rule $A_i \rightarrow u_{i+1} A_{i+1}$, replace u_{i+1} by variable U_{i+1} and add rule $U_{i+1} \rightarrow u_{i+1}$.