
CSE 555 Theory of Computation Class 2 (1/17)

Goran Konjevod

Department of Computer Science and Engineering
Arizona State University

ASU, Spring 2008

Last time: Regular languages, FA

Finite automaton.
Regular language: accepted by a FA.
Computation: step by step, each step completely determined by
the current state and input symbol.

Nondeterministic Computation

If A and B are both regular then A ∪ B is also.

Proof: Given FA MA (that accepts A) and MB (that accepts B),
construct MA∪B that accepts A ∪ B. Construction idea: simulate
both machines at the same time, using states that correspond to
pairs of a state of MA and a state of MB

“Simpler” Union?

Definition of set union: a string belongs to A ∪ B iff it belongs to
A or to B.

Can a machine do that?

Machine that chooses between two possibilities

q0

q1

q2

0, 1

0, 1

Not a FA according to our definitions...
(Q,Σ, δ, q0,F), where δ : Q × Σ is a function...
According to our definitions, given a state and a symbol, there is
exactly one state to go to...

Solution: change the definition!

What if, given a state and a symbol, there can be more than one
state to go to?
Nondeterminism: not necessarily a unique computation path.

s1

s2

s3

s4

s5

s6

(a)

s1

s2 s3

s4 s5 s6

(b)

Nondeterministic Finite Automaton Definition

A nondeterministic finite automaton is a 5-tuple (Q,Σ, δ, q0,F),
where

Q is a finite set (of states).

Σ is a finite set (alphabet, its elements denoted as letters or
symbols).

δ is a function δ : Q × Σ → P(Q) (the transition function),
where P(Q) is the power set of Q (the set of all subsets of Q).

q0 is an element of Q (the start state).

F is a subset of Q (the set of accepting states).

What does this mean?

Two problems:

1 When does an NFA accept? (For a DFA: if it ends up in an
accepting state.)

2 How do we figure out if the NFA accepts a string? (For a
DFA: just simulate it step by step and see.)

Nondeterministic Finite Automaton: remainder of
definition

Input: a string over some given alphabet Σ.
Output: Yes/No.
Machine:

1 Reads input one symbol at a time.

2 At each moment, is in (any one of) a unique set of states.

3 Before reading any input, is in the set that includes only
the start state.

4 If now is in a set that includes some state q and reads input
letter a, then in the next moment, is in a set that includes all
states that belong to δ(q, a).

5 Computation halts when input is exhausted.

6 If halted in a set that includes an accepting state, output is
Yes, otherwise output is No.

DFA vs. NFA: unique states vs. sets of states

1 When does an NFA accept? Whenever there exists a path
from the start state to an accepting state that can be followed
while reading the input.

2 How do we figure out if the NFA accepts a string? Simulate it
just like a DFA, but instead of the “current state”, maintain
the “set of current states”. (Complexity of this is still linear in
the length of the input, but with an extra factor of |Σ|.)

ε-transitions

1 2

3

2
ε

a

a
a, b

b

Nondeterministic Finite Automaton: Complete Definition

A nondeterministic finite automaton is a 5-tuple (Q,Σ, δ, q0,F),
where

Q is a finite set (of states).

Σ is a finite set (alphabet, its elements denoted as letters or
symbols).

δ is a function δ : Q × (Σ ∪ {ε}) → P(Q) (the transition
function), where P(Q) is the power set of Q (the set of all
subsets of Q).

q0 is an element of Q (the start state).

F is a subset of Q (the set of accepting states).

Example of usefulness of NFAs

Let Σ = {0, 1}.
L = {w ∈ Σ∗ | the 8th symbol from the end of w is a 0}.
Describe a DFA for L.
We need 28 = 256 states!
There is an NFA with only 9 states...
So, from an NFA with n + 1 states we may get a DFA with 2n.
(The worst case.)

DFA vs. NFA: languages

Can NFA accept any languages that DFA cannot?
They do seem more powerful... but the state vs. set-of-states
intuition says no..

Equivalence

Theorem

Let M be an NFA. Then L(M) is a regular language.

In other words, for every NFA, there exists a DFA that accepts
exactly the same set of strings.
Proof: by construction

Example of NFA to DFA conversion

1 2

3

2
ε

a

a
a, b

b

(Conversion done in full on the whiteboard.)

NFA to DFA conversion: symbolic description

From the NFA N = (Q,Σ, δ, q0,F), we construct a DFA
M = (Q ′,Σ, δ′, q′0,F

′).

1 Q ′ = P(Q). (Every state of M is a set of states of N.)

2 For R ⊆ Q, let E (R) be the set of states of N that can be
reached from states of R by following only ε-transitions.

3 For R ∈ Q ′ and a ∈ Σ, let δ′(R, a) =
⋃

q∈E(R) E (δ(q, a)).

4 q′0 = {q0}.
5 F ′ = {R ∈ Q ′ | R ∩ F 6= ∅}.

Regular operations revisited

Theorem

If A and B are regular languages, then

1 so is A ∪ B

2 so is A ◦ B

3 so is A∗

Proof: easy using NFA—done on the whiteboard.

So far: DFA, NFA, regular languages

Finite automata: deterministic or nondeterministic.
Regular language: accepted by a FA.
DFA and NFA equivalent in terms of power.
NFA sometimes more efficient (compact).

Regular Expressions

Regular languages = languages accepted by FA.
(Computational definition.)
(Next:) Regular languages = languages described by RE (Syntactic
definition.)

Basic regular expressions

a, for any a ∈ Σ.
ε
∅

Regular operations

Union
Concatenation
Star

Definition of Regular Expression

R is a regular expression, if one of the following holds:

1 R = a for some a ∈ Σ,

2 R = ε,

3 R = ∅,
4 R = (R1 ∪ R2), where R1 and R2 are regular expressions,

5 R = (R1 ◦ R2), where R1 and R2 are regular expressions,

6 R = (R∗
1), where R1 is a regular expression.

Parentheses may be omitted. Precedence order: star,
concatenation, union. R represents the language L(R).

Regular expression examples: identities

R ∪ ∅ = R.

R ◦ ε = R

Is R ∪ ε = R? No!

R1(R2 ∪ R3) = R1R2 ∪ R1R3.

(R1R2)
∗R1 = R1(R2R1)

∗.

(R1 ∪ R2)
∗ = (R∗

1 ∪ R2)
∗ = (R∗

1R2)
∗R∗

1

Regular expressions describe exactly regular languages

Theorem

A language is regular if and only if it is described by some regular
expression.

Proof.

Need to prove two parts:
1: If a language is described by some regular expression then it is
regular.
2: If a language is regular then it is described by some regular
expression.

L(R) is regular.

Proof:
Induction on the structure of the expression.
Basis: cases 1,2,3—verify directly that the language is regular.

Definition of Regular Expression

R is a regular expression, if one of the following holds:

1 R = a for some a ∈ Σ,

2 R = ε,

3 R = ∅,
4 R = (R1 ∪ R2), where R1 and R2 are regular expressions,

5 R = (R1 ◦ R2), where R1 and R2 are regular expressions,

6 R = (R∗
1), where R1 is a regular expression.

Part 1: L(R) is regular.

Proof:
Induction on the structure of the expression.
Basis: cases 1,2,3—verify directly that the language is regular.
Inductive step: regular operations preserve regularity (last time).
Done.
A by-product of the proof: method to convert any RE into an NFA.

Part 2: For every regular language there is a RE

Idea: design a procedure to convert a DFA into an equivalent RE.
Intuition:
DFA has many states, and its transitions are labeled by single
letters.
RE can be thought of as an NFA with two states, and a single
transition labeled by the whole RE.
Transform DFA into RE step by step, reducing the number of
states, while possibly making transition labels more complex.

Example: strings with an even number of 1s and 0s.

(Done on the whiteboard.)

Formal description: GNFA

A GNFA (generalized nondeterministic finite automaton) is a
5-tuple (Q,Σ, δ, q0, q1), where

Q is a finite set (of states).

Σ is a finite set (alphabet, its elements denoted as letters or
symbols).

δ is a function δ : (Q − {q1})(Q − {q0}) → R (the transition
function), where R is the set of all regular expressions.

q0 is an element of Q (the start state).

q1 is an element of Q (the accepting state).

Formal description: DFA to RE conversion

First convert DFA M to GNFA G by adding a new start state (q0)
and accept state (q1) and transitions as necessary.
Convert(G):

Let k be the number of states of G .

If k = 2, then G has only the start and accept state
connected by transition labeled with some RE R. Return R.

(If k > 2) Select any state qr ∈ Q − {q0, q1}. Let
G ′ = (Q ′,Σ, δ′, q0, q1), where Q ′ = Q − {qr}, and for any
qi ∈ Q ′ − {q1} and any qj ∈ Q ′ − {q0}, let

δ′(qi , qj) = (R1)(R2)
∗(R3) ∪ (R4),

where R1 = δ(qi , qr), R2 = δ(qr , qr), R3 = δ(qr , qj) and
R4 = δ(qi , qj).

Call Convert(G ′).

Designing RE

Give a RE for the following language:

1 {w | w doesn’t contain the substring 110}.
2 {w | w 6∈ {11, 111}}.

Homework 2

Due 1/30 at the beginning of class.

