CSE 555 Theory of Computation Class 2 (1/17)

Goran Konjevod

Department of Computer Science and Engineering
Arizona State University

ASU, Spring 2008

Last time: Regular languages, FA

Finite automaton.

Regular language: accepted by a FA.

Computation: step by step, each step completely determined by
the current state and input symbol.

Nondeterministic Computation

If A and B are both regular then AU B is also.

Proof: Given FA M, (that accepts A) and Mg (that accepts B),
construct Mg that accepts AU B. Construction idea: simulate
both machines at the same time, using states that correspond to
pairs of a state of M, and a state of Mg

“Simpler” Union?

Definition of set union: a string belongs to AU B iff it belongs to
Aorto B.

Can a machine do that?

Machine that chooses between two possibilities

Not a FA according to our definitions...

(Q,%,9,qo, F), where § : Q@ x X is a function...

According to our definitions, given a state and a symbol, there is
exactly one state to go to...

Solution: change the definition!

What if, given a state and a symbol, there can be more than one
state to go to?
Nondeterminism: not necessarily a unique computation path.

Nondeterministic Finite Automaton Definition

A nondeterministic finite automaton is a 5-tuple (Q, X, d, go, F),
where

e @ is a finite set (of states).

@ X is a finite set (alphabet, its elements denoted as letters or
symbols).

@ J is a function § : Q X ¥ — P(Q) (the transition function),
where P(Q) is the power set of Q (the set of all subsets of Q).

@ qo is an element of Q (the start state).

@ F is a subset of Q (the set of accepting states).

What does this mean?

Two problems:

@ When does an NFA accept? (For a DFA: if it ends up in an
accepting state.)

@ How do we figure out if the NFA accepts a string? (For a
DFA: just simulate it step by step and see.)

Nondeterministic Finite Automaton: remainder of

definition

Input: a string over some given alphabet .
Output: Yes/No.
Machine:

o
o
o

Reads input one symbol at a time.
At each moment, is in (any one of) a unique set of states.

Before reading any input, is in the set that includes only
the start state.

If now is in a set that includes some state g and reads input
letter a, then in the next moment, is in a set that includes all
states that belong to d(q, a).

Computation halts when input is exhausted.

If halted in a set that includes an accepting state, output is
Yes, otherwise output is No.

DFA vs. NFA: unique states vs. sets of states

©@ When does an NFA accept? Whenever there exists a path
from the start state to an accepting state that can be followed
while reading the input.

@ How do we figure out if the NFA accepts a string? Simulate it
just like a DFA, but instead of the “current state”, maintain
the “set of current states”. (Complexity of this is still linear in
the length of the input, but with an extra factor of |X|.)

e-transitions

Nondeterministic Finite Automaton: Complete Definition

A nondeterministic finite automaton is a 5-tuple (Q, X, d, qo, F),
where

e Q is a finite set (of states).

e Y is a finite set (alphabet, its elements denoted as letters or
symbols).

@ ¢ is a function ¢ : Q@ x (X U {e}) — P(Q) (the transition
function), where P(Q) is the power set of Q (the set of all
subsets of Q).

@ qo is an element of Q (the start state).

@ F is a subset of Q (the set of accepting states).

Example of usefulness of NFAs

Let ¥ = {0,1}.

L={w e X*| the 8th symbol from the end of w is a 0}.
Describe a DFA for L.

We need 28 = 256 states!

There is an NFA with only 9 states...

So, from an NFA with n+ 1 states we may get a DFA with 2".
(The worst case.)

DFA vs. NFA: languages

Can NFA accept any languages that DFA cannot?
They do seem more powerful... but the state vs. set-of-states
intuition says no..

Equivalence

Let M be an NFA. Then L(M) is a regular language.

In other words, for every NFA, there exists a DFA that accepts
exactly the same set of strings.
Proof: by construction

Example of NFA to DFA conversion

(Conversion done in full on the whiteboard.)

NFA to DFA conversion: symbolic description

From the NFA N = (Q, X, , qo, F), we construct a DFA
M = (Q,’ 2’5,5 q(l)v F,)
Q@ Q' =P(Q). (Every state of M is a set of states of N.)

@ For R C Q, let E(R) be the set of states of N that can be
reached from states of R by following only e-transitions.

@ For Re Q" and ac T, let 0'(R, a) = Ugeg(r) E(9(g 3))-

Q g5 = {qo}.
@ FF={ReQ|RNF#0}.

Regular operations revisited

If A and B are regular languages, then

Q@ soisAUB
Q soisAoB
@ sois A*

Proof: easy using NFA—done on the whiteboard.

So far: DFA, NFA, regular languages

Finite automata: deterministic or nondeterministic.
Regular language: accepted by a FA.

DFA and NFA equivalent in terms of power.

NFA sometimes more efficient (compact).

Regular Expressions

Regular languages = languages accepted by FA.

(Computational definition.)

(Next:) Regular languages = languages described by RE (Syntactic
definition.)

Basic regular expressions

a, forany ae x.
€

0

Regular operations

Union
Concatenation
Star

Definition of Regular Expression

R is a regular expression, if one of the following holds:

@ R=aforsomeacy,

Q@ R=g¢,

Q@ R=10,

Q@ R=(R1URy), where Ry and Ry are regular expressions,
©@ R=(Ri0oRy), where Ry and R» are regular expressions,
@ R = (RY), where Ry is a regular expression.

Parentheses may be omitted. Precedence order: star,
concatenation, union. R represents the language L(R).

Regular expression examples: identities

RUD=R.

Roe=R

IsRUe=R? No!

Ri(R2UR3) = RiR, U RiRs.
(RiR2)*R1 = Ri(RaRy)™.

(RiURo)* = (R{ URo)* = (RiR)" Ry

Regular expressions describe exactly regular languages

Theorem

A language is regular if and only if it is described by some regular
expression.

.

Proof.

Need to prove two parts:

1: If a language is described by some regular expression then it is
regular.

2: If a language is regular then it is described by some regular
expression. L]

.

L(R) is regular.

Proof:
Induction on the structure of the expression.
Basis: cases 1,2,3—verify directly that the language is regular.

Definition of Regular Expression

R is a regular expression, if one of the following holds:

Q@ R=aforsomeacy,

Q@ R=k¢,

Q@ R=10,

0 R = (R1 U Ry), where Ry and R, are regular expressions,
= (R1 0 R2), where Ry and R» are regular expressions,
=(R

7). where Ry is a regular expression.

Part 1: L(R) is regular.

Proof:

Induction on the structure of the expression.

Basis: cases 1,2,3—verify directly that the language is regular.
Inductive step: regular operations preserve regularity (last time).
Done.

A by-product of the proof: method to convert any RE into an NFA.

Part 2: For every regular language there is a RE

Idea: design a procedure to convert a DFA into an equivalent RE.
Intuition:

DFA has many states, and its transitions are labeled by single
letters.

RE can be thought of as an NFA with two states, and a single
transition labeled by the whole RE.

Transform DFA into RE step by step, reducing the number of
states, while possibly making transition labels more complex.

Example: strings with an even number of 1s and Os.

(Done on the whiteboard.)

Formal description: GNFA

A GNFA (generalized nondeterministic finite automaton) is a
5-tuple (Q, X, 0, qo, g1), where

e @ is a finite set (of states).

@ X is a finite set (alphabet, its elements denoted as letters or
symbols).

@ Jis a function § : (Q — {g1})(Q — {q0}) — R (the transition
function), where R is the set of all regular expressions.

@ qo is an element of Q (the start state).

@ ¢ is an element of Q (the accepting state).

Formal description: DFA to RE conversion

First convert DFA M to GNFA G by adding a new start state (qo)
and accept state (g1) and transitions as necessary.
Convert(G):
@ Let k be the number of states of G.
o If k =2, then G has only the start and accept state
connected by transition labeled with some RE R. Return R.
o (If k > 2) Select any state g, € Q@ — {qo, q1}. Let
G'=(Q,X,¢,q0,q1), where @ = Q — {q,}, and for any
gi€ Q@ —{qgi1} and any g; € Q" — {qo}, let

8'(qi, qj) = (R1)(R2)"(Rs) U (Ra),

where Rl = 5(67/, qr)r R2 = 5(qr7 CIr), R3 = 5(¢Ir, qj) and
R4 = 6(qi7 qj)
e Call Convert(G’).

Give a RE for the following language:

@ {w | w doesn't contain the substring 110}.
Q@ {w|w¢{11,111}}.

Due 1/30 at the beginning of class.

