CSE 555 Theory of Computation Class 2 (1/17)

Goran Konjevod

Department of Computer Science and Engineering Arizona State University

ASU, Spring 2008

Finite automaton.

Regular language: accepted by a FA.

Computation: step by step, each step completely determined by the current state and input symbol.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

If A and B are both regular then $A \cup B$ is also.

Proof: Given FA M_A (that accepts A) and M_B (that accepts B), construct $M_{A\cup B}$ that accepts $A \cup B$. Construction idea: simulate both machines at the same time, using states that correspond to pairs of a state of M_A and a state of M_B

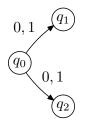
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition of set union: a string belongs to $A \cup B$ iff it belongs to A or to B.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Can a machine do that?

Machine that chooses between two possibilities



Not a FA according to our definitions...

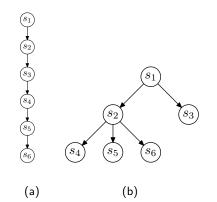
 $(Q, \Sigma, \delta, q_0, F)$, where $\delta : Q \times \Sigma$ is a function...

According to our definitions, given a state and a symbol, there is exactly one state to go to...

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○○

Solution: change the definition!

What if, given a state and a symbol, there can be more than one state to go to? Nondeterminism: not necessarily a unique computation path.



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A nondeterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- Q is a finite set (of *states*).
- Σ is a finite set (*alphabet*, its elements denoted as *letters* or *symbols*).
- δ is a function δ : Q × Σ → P(Q) (the transition function), where P(Q) is the power set of Q (the set of all subsets of Q).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- q_0 is an element of Q (the start state).
- *F* is a subset of *Q* (the set of *accepting states*).

Two problems:

- When does an NFA accept? (For a DFA: if it ends up in an accepting state.)
- How do we figure out if the NFA accepts a string? (For a DFA: just simulate it step by step and see.)

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Nondeterministic Finite Automaton: remainder of definition

Input: a string over some given alphabet Σ . **Output:** Yes/No. **Machine:**

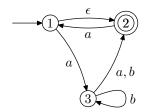
- Reads input one symbol at a time.
- 2 At each moment, is in (any one of) a unique set of states.
- Before reading any input, is in the set that includes only the start state.
- If now is in a set that includes some state q and reads input letter a, then in the next moment, is in a set that includes all states that belong to δ(q, a).
- **o** Computation halts when input is exhausted.
- If halted in a set that includes an accepting state, output is Yes, otherwise output is No.

DFA vs. NFA: unique states vs. sets of states

- When does an NFA accept? Whenever there exists a path from the start state to an accepting state that can be followed while reading the input.
- Of the end of the end of the input, but with an extra factor of |Σ|.)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

ϵ -transitions



A nondeterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- Q is a finite set (of *states*).
- Σ is a finite set (*alphabet*, its elements denoted as *letters* or *symbols*).
- δ is a function δ : Q × (Σ ∪ {ε}) → P(Q) (the transition function), where P(Q) is the power set of Q (the set of all subsets of Q).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- q_0 is an element of Q (the *start state*).
- *F* is a subset of *Q* (the set of *accepting states*).

Let $\Sigma = \{0, 1\}$. $L = \{w \in \Sigma^* \mid \text{ the 8th symbol from the end of } w \text{ is a 0}\}$. Describe a DFA for L. We need $2^8 = 256$ states! There is an NFA with only 9 states... So, from an NFA with n + 1 states we may get a DFA with 2^n . (The worst case.)

Can NFA accept any languages that DFA cannot? They do seem more powerful... but the state vs. set-of-states intuition says no..

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem

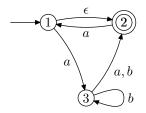
Let M be an NFA. Then L(M) is a regular language.

In other words, for every NFA, there exists a DFA that accepts exactly the same set of strings.

◆□▶ ◆□▶ ◆三▶ ◆三▶ →三 ● ● ●

Proof: by construction

Example of NFA to DFA conversion



▲ロト ▲圖 ト ▲ ヨト ▲ ヨト ― ヨー つくぐ

(Conversion done in full on the whiteboard.)

From the NFA $N = (Q, \Sigma, \delta, q_0, F)$, we construct a DFA $M = (Q', \Sigma, \delta', q'_0, F')$.

1 $Q' = \mathcal{P}(Q)$. (Every state of *M* is a set of states of *N*.)

Por R ⊆ Q, let E(R) be the set of states of N that can be reached from states of R by following only ε-transitions.

3 For
$$R \in Q'$$
 and $a \in \Sigma$, let $\delta'(R, a) = \bigcup_{q \in E(R)} E(\delta(q, a))$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$q_0' = \{q_0\}.$$

Theorem

If A and B are regular languages, then

1	so	is	Α	U	В
2	so	is	Α	0	В

so is A*

Proof: easy using NFA-done on the whiteboard.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Finite automata: deterministic or nondeterministic. Regular language: accepted by a FA. DFA and NFA equivalent in terms of power. NFA sometimes more efficient (compact).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

```
Regular languages = languages accepted by FA.
(Computational definition.)
(Next:) Regular languages = languages described by RE (Syntactic definition.)
```

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

$\begin{array}{l} \textit{a, for any } \textit{a} \in \Sigma. \\ \textit{ϵ} \\ \emptyset \end{array}$

▲ロト ▲圖 ト ▲ ヨト ▲ ヨト ― ヨー つくぐ

Union Concatenation Star

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

R is a regular expression, if one of the following holds:

•
$$R = a$$
 for some $a \in \Sigma$,

2
$$R = \epsilon$$

• $R = (R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,

• $R = (R_1 \circ R_2)$, where R_1 and R_2 are regular expressions,

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• $R = (R_1^*)$, where R_1 is a regular expression.

Parentheses may be omitted. Precedence order: star, concatenation, union. R represents the language L(R).

 $R \cup \emptyset = R.$ $R \circ \epsilon = R$ Is $R \cup \epsilon = R$? No! $R_1(R_2 \cup R_3) = R_1R_2 \cup R_1R_3.$ $(R_1R_2)^*R_1 = R_1(R_2R_1)^*.$ $(R_1 \cup R_2)^* = (R_1^* \cup R_2)^* = (R_1^*R_2)^*R_1^*$

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Theorem

A language is regular if and only if it is described by some regular expression.

Proof.

Need to prove two parts:

1: If a language is described by some regular expression then it is regular.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

2: If a language is regular then it is described by some regular expression.

Proof: Induction on the structure of the expression. Basis: cases 1,2,3—verify directly that the language is regular.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

R is a regular expression, if one of the following holds:

•
$$R = a$$
 for some $a \in \Sigma$,

- $R = (R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
- $R = (R_1 \circ R_2)$, where R_1 and R_2 are regular expressions,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• $R = (R_1^*)$, where R_1 is a regular expression.

Proof:

Induction on the structure of the expression.

Basis: cases 1,2,3—verify directly that the language is regular.

Inductive step: regular operations preserve regularity (last time). Done.

A by-product of the proof: method to convert any RE into an NFA.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Idea: design a procedure to convert a DFA into an equivalent RE. Intuition:

DFA has many states, and its transitions are labeled by single letters.

RE can be thought of as an NFA with two states, and a single transition labeled by the whole RE.

Transform DFA into RE step by step, reducing the number of states, while possibly making transition labels more complex.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example: strings with an even number of 1s and 0s.

(Done on the whiteboard.)

A GNFA (generalized nondeterministic finite automaton) is a 5-tuple $(Q, \Sigma, \delta, q_0, q_1)$, where

- Q is a finite set (of *states*).
- Σ is a finite set (*alphabet*, its elements denoted as *letters* or *symbols*).
- δ is a function δ : (Q {q₁})(Q {q₀}) → R (the transition function), where R is the set of all regular expressions.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- q_0 is an element of Q (the start state).
- q_1 is an element of Q (the *accepting state*).

Formal description: DFA to RE conversion

First convert DFA M to GNFA G by adding a new start state (q_0) and accept state (q_1) and transitions as necessary. Convert(G):

- Let k be the number of states of G.
- If k = 2, then G has only the start and accept state connected by transition labeled with some RE R. Return R.
- (If k > 2) Select any state $q_r \in Q \{q_0, q_1\}$. Let $G' = (Q', \Sigma, \delta', q_0, q_1)$, where $Q' = Q \{q_r\}$, and for any $q_i \in Q' \{q_1\}$ and any $q_j \in Q' \{q_0\}$, let

$$\delta'(q_i, q_j) = (R_1)(R_2)^*(R_3) \cup (R_4),$$

where $R_1 = \delta(q_i, q_r)$, $R_2 = \delta(q_r, q_r)$, $R_3 = \delta(q_r, q_j)$ and $R_4 = \delta(q_i, q_j)$.

• Call Convert(G').

Give a RE for the following language:

• $\{w \mid w \text{ doesn't contain the substring 110}\}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

2 $\{w \mid w \notin \{11, 111\}\}.$

Due 1/30 at the $\ensuremath{\textbf{beginning}}$ of class.

