Homework 5 CSE 450/598 Fall 2007 Arizona State University

Due: Wednesday 9/26 before 9:15

1. Consider an undirected graph with two weights associated with each edge, w; and w;.
The first weight wy(e) represents the time it takes to construct the edge e. The second
weight w;(e) represents the cost of the construction of e. The goal is to construct a
network connecting all the vertices of the graph. Any number of edges can be constructed
in parallel. The primary objective is to minimize the construction time (remember, any
number of edges can be constructed in parallel). The secondary objective is to minimize
the cost of the network. Describe an efficient algorithm that satisfies both objectives.
In other words, give an algorithm that finds a spanning tree that can be constructed in
minimum possible time such that it has the smallest weight among all trees that can be
constructed in this minimum time. Prove that your algorithm is correct.

2. Suppose you are given a diagram of a telephone network, which is a graph G whose vertices
represent switching centers, and whose edges represent communication lines between two
centers. Each edge e is labeled by its bandwidth b(e). The bandwidth of a path is defined
as the bandwidth of its lowest-bandwidth edge. Give an efficient algorithm that, given a
network diagram and two switching centers a and b, will output the maximum bandwidth
of a path between a and b.

3. (4.26) One of the first things you learn in calculus is how to minimize a differentiable
function such as y = ax? + bx + ¢, where a > 0. The minimum spanning tree problem,
on the other hand, is a minimization problem of a very different flavor: there are now
just a finite number of possibilities for how the minimum might be achieved—rather than
a continuum of possibilities—and we are interested in how to perform the computation
without having to exhaust this (huge) finite number of possibilities.

One can ask what happens when these two minimization issues are brought together,
and the following question is an example of this. Suppose we have a connected graph
G = (V, E). Each edge e now has a time-varying edge cost given by a function f. : R — R.
Thus, at time t, it has cost fe(t). We’ll assume that all these functions are positive over
their entire range. Observe that the set of edges constituting the minimum spanning tree
of G may change over time. Also, of course, the cost of the minimum spanning tree of
G becomes a function of the time t; we’ll denote this function cg(t). A natural problem
then becomes: find a value of t at which cg(t) is minimized.

Suppose each functio f.(t) is a polynomial of degree 2: f.(t) = a.t? + bt + c., where
a. > 0. Give an algorithm that takes the graph G and the values {(ac, be,c.)|e € E}
and returns a value of the time t at which the minimum spanning tree has minimum cost.
Your algorithm should run in time polynomial in the number of nodes and edges of the
graph G. You may assume that arithmetic operations on the number {(a., b, c.)} can be
done in constant time per operation.

4. (4.28) Suppose you're a consultant for the networking company CluNet, and they have
the following problem. The network that they’re currently working on is modeled by a



connected graph G = (V, E) with n nodes. Each edge e is a fiber-optic cable that is owned
by one of two companies—creatively named X and Y—and leased to CluNet.

CluNet’s plan is to choose a spanning tree T of G and upgrade the links corresponding
to the edges of T. Their business relations people have already concluded an arrangement
with companies X and Y stipulating a number k such that in the tree T that is chosen, k of
the edges will be owned by X and n — k of the edges will be owned by Y.

CluNet management now faces the following problem. It is not at all clear to them
whether there even exists a spanning tree T meeting these conditions, or how to find one
if it does exist. So this is the problem they put to you: give a polynomial-time algorithm
that takes G, with each edge labeled X or Y, and either (1) returns a spanning tree with
exactly k edges labeled X, or (2) reports correctly that no such tree exists.

. [Implementation Question] Implement Dijkstra’s algorithm in python, using the library
module heapq to handle the priority queue. More precisely, write a function dijkstra
that takes as arguments a graph G and source vertex s, and outputs shortest paths from s
to all other vertices of G.

The graph G will be represented by a triple (n, E, c), where V is the number of vertices in
G, E alist of adjacency lists representing the edges of G (so that, for example E[1] = [3, 4, 5]
means that there are directed edges in G from vertex 1 to exactly the three vertices 3, 4,
and 5), and c a dictionary specifying the cost of each edge, so that, for example c[(1,3)] is
the value of the edge from 1 to 3. A small example of a graph in this format will be given
in the code directory of the course website.

Your implementation should use the library module heapq to handle the priority queue.
You should do this without defining any new classes (we’ll deal with a more general prob-
lem later and there some class definitions will be necessary). Important facts in this will
be (1) the heap module uses a standard comparison, and (2) tuples can be compared in
python, and the comparison is defined to work: if (a,b) and (c, d) are two tuples, then
(a,b) < (c,d)if a < corif a =candb < d. While accessing the heap, you should only
use the functions of the heapg module, even though the actual python type of the heap
object is the ordinary list.

The function dijkstra should return a list of |V] lists; the i-th list will consist of the
vertices on the shortest s-1 path found by the algorithm. Example:

[ [2, 1, 4, o1, [2, 11, [2], [2, 1, 31, [2, 1, 4] ]

One problem you’ll have (since you cannot create new classes) is that there seems to be no
way to implement a decrease-key operation. This is because the heap is just a list, and
you cannot quickly locate a heap element by name to change its value. Hint: whenever
the key of an element changes, add a new copy of the element to the heap. The smallest
one will be extracted first, and the later ones can be safely ignored.

A final request: when importing the functions from the heapq module write, for example,

from heapq import heapify, heappop, heappush



