Homework 3 CSE 450/598 Fall 2007 Arizona State University

Due: Wednesday 9/12 before 9:15

1. (4.2) For each of the following statements, decide whether it is true or false. If it is true,
give a short explanation. If it is false, give a counterexample.

() Suppose we are given an instance of the Minimum Spanning Tree problem on a graph
G, with edge costs that are all positive and distinct. Let T be a minimum spannmg tree
for this instance. Now suppose we replace each edge cost c. by its square c2, thereby
creating a new instance of the problem with the same graph but different costs.

True or false? T must still be a minimum spanning tree for this new instance.

(b) Suppose we are given an instance of the Shortest s-t Path problem on a directed graph
G. We assume that all edge costs are positive and distinct. Let P be a minimum-cost
s-t path for this instance. Now suppose we replace each edge cost c. by its square
c2, thereby creating a new instance of the problem with the same graph but different
costs.
True or false? P must still be a minimume-cost s-t path for this new instance.

2. (4.13) A small business—say, a photocopying service with a single large machine— faces the
following scheduling problem. Each morning they get a set of jobs from customers. They
want to do the jobs on their single machine in an order that keeps their customers happiest.
Customer 1’s job will take time t; to complete. Given a schedule (i.e., an ordering of the
jobs), let C; denote the finishing time of job i. For example, if job j is the first to be done,
we would have C; = t;; and if job j is done right after job 1, we would have C; = C; + t;.
Each customer 1 also has a given weight w; that represents his or her importance to the
business. The happiness of customer 1 is expected to be dependent of the finishing time of
i’s job. So the company decides that they want to order the jobs to minimize the weighted
sum of the completion times, > i, w;C;.

Design an efficient algorithm to solve this problem. That is, you are given a set of nn jobs

with a processing time t; and a weight w; for each job. You want to order the jobs so as
to minimize the weighted sum of the completion times, > I, w;C;.

Example. Suppose there are two jobs: the first takes time t; = 1 and has weight w; = 10,
while the second job takes time t, = 3 and has weight w, = 2. Then doing job 1 first
would yield a weighted completion time of 10 -1+ 2 - 4 = 18, while doing the second job
first would yield the larger weighted completion time of 10-4 42 -3 = 46.

3. (4.25) Suppose we are given a set of points P = {py, P2, ..., Pn}, together with a distance
function d on the set P: d is simply a function on pairs of points in P such that

* d(pi,p;) = d(pj,pi) > 0if i #j, and
® d(pi,pi) = 0for each i.

We define a hierarchical metric on P to be any distance function T that can be constructed
as follows. We build a rooted tree T with n leaves, and associate with each node v of T
(both leaves and internal nodes) a beight h,,. These heights must satisfy the properties that

1

® h(v) = 0 for each leaf v, and
e if uis the parent of v in T, then h(u) > h(v).

We place each point in P at a distinct leaf of T. Now, for any pair of points p; and p;, their
distance T(pi, ;) is defined as follows. We find the least common ancestor v in T of the
leaves containing p; and pj, and define t(p;, p;) = hy.

We say that a hierarchical metric T is consistent with our distance function d, if for all pairs
i’) js we have T(pis p]) < d(pi) Pj)

Give a polynomial-time algorithm that takes the distance function d and produces a hier-
archical metric T such that

(a) T is consistent with d, and

(b) if T/ is any other hierarchical metric consistent with d, then v/ (pi, p;) < T(pi, p;) for
each pair of points p, p;.

. [Implementation question] (Help Hermione Granger!) Hermione is back to Hogwarts
for her third year, and wants to take many classes, several of which unfortunately overlap
in schedule. (The schedule is designed to accomodate average students.) To help her, Prof.
McGonagall gives Hermione a time-turner, that is, a device that allows its owner to turn
back time and thus appear in more than one place at a time. Time-turners are carefully
controlled by the Ministry of Magic, and so Hermione should not use hers any more than
strictly necessary. Write a function schedule that takes as input a single argument, a list
of the form [(’Potions’, 10), (’Transfigurations’, 11), (’Charms’, 10.5)
1. In this list, every entry is a pair (tuple) of a string (describing the name of the class)
and a number (describing the start time of the class). (For simplicity, let the numbers be
floats, and interpret, for example, 10.5 as 10:30. Also for simplicity, assume that every class
lasts exactly 50 minutes and the remaining 10 are sufficient to reach wherever the next class
is held: thus two classes do not conflict if and only if their start time differs by at least 1
hour.) Your function should compute a schedule for Hermione by grouping classes into a
minimum number of groups such that classes in each group do not overlap, and thus can
be taken without using the time-turner. Then Hermione only needs to use the time-turner
between different groups of classes. (In the three-class list above, she could group Potions
and Transfigurations together, then use the time-turner to go back and take Charms as
well, because that class period overlaps the other two.) Your function should output the
groups of classes in the form of a list of lists: for the example above, the function should
return the list [[’Potions’, ’Transfigurations’], [’Charms’] 1. (It doesn’t
matter how long each list is; even though a time-turner can be turned once to go back an
hour, but requires two turns for two hours etc., we won’t worry about the total number
of turns necessary, just the total number of discrete times the device is used.) Within each
list, the classes should be sorted alphabetically. For the sorting, you may use the built in
list sort method.

