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1. INTRODUCTION

The dictionary data structure is ubiquitous in computer science. A dic-
tionary is used for maintaining a set S under insertion and deletion of
elements (referred to as keys) from a universe U . Membership queries
(“x ∈ S?”) provide access to the data. In case of a positive answer the
dictionary also provides a piece of satellite data that was associated with
x when it was inserted.

A large theory, partially surveyed in Section 2, is devoted to dictionaries.
It is common to study the case where keys are bit strings in U = {0, 1}w

and w is the word length of the computer (for theoretical purposes modeled
as a RAM). Section 3 discusses this restriction. It is usually, though not
always, clear how to return associated information once membership has
been determined. E.g., in all methods discussed in this paper, the associ-
ated information of x ∈ S can be stored together with x in a hash table.
Therefore we disregard the time and space used to handle associated infor-
mation and concentrate on the problem of maintaining S. In the following
we let n denote |S|.

The most efficient dictionaries, in theory and in practice, are based on
hashing techniques. The main performance parameters are of course lookup
time, update time, and space. In theory there is no trade-off between these:
One can simultaneously achieve constant lookup time, expected amortized
constant update time, and space within a constant factor of the information
theoretical minimum of B = log

(

|U |
n

)

bits [6]. In practice, however, the
various constant factors are crucial for many applications. In particular,
lookup time is a critical parameter. It is well known that one can achieve
performance arbitrarily close to optimal if a sufficiently sparse hash table is
used. Therefore the challenge is to combine speed with a reasonable space
usage. In particular, we only consider schemes using O(n) words of space.

The contribution of this paper is a new, simple hashing scheme called
Cuckoo Hashing. A description and analysis of the scheme is given in
Section 4, showing that it possesses the same theoretical properties as the
dynamic dictionary of Dietzfelbinger et al. [10]. That is, it has worst case
constant lookup time and amortized expected constant time for updates.
A special feature of the lookup procedure is that (disregarding accesses
to a small hash function description) there are just two memory accesses,
which are independent and can be done in parallel if this is supported by
the hardware. Our scheme works for space similar to that of binary search
trees, i.e., three words per key in S on average.

Using weaker hash functions than those required for our analysis, Cuckoo

Hashing is very simple to implement. Section 5 describes such an imple-
mentation, and reports on extensive experiments and comparisons with the
most commonly used methods, having no nontrivial worst case guarantee
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on lookup time. It seems that an experiment comparing the most com-
monly used methods on a modern multi-level memory architecture has not
previously been described in the literature. Our experiments show Cuckoo

Hashing to be quite competitive, especially when the dictionary is small
enough to fit in cache. We thus believe it to be attractive in practice, when
a worst case guarantee on lookups is desired.

2. PREVIOUS WORK ON LINEAR SPACE DICTIONARIES

Hashing, first described in public literature by Dumey [12], emerged in
the 1950s as a space efficient heuristic for fast retrieval of information in
sparse tables. Knuth surveys the most important classical hashing meth-
ods in [18, Section 6.4]. The most prominent, and the basis for our ex-
periments in Section 5, are Chained Hashing (with separate chaining),
Linear Probing and Double Hashing. Judging from leading textbooks
on algorithms, Knuth’s selection of algorithms is in agreement with cur-
rent practice for implementation of general purpose dictionaries. In par-
ticular, the excellent cache usage of Linear Probing makes it a prime
choice on modern architectures. A more recent scheme called Two-Way

Chaining [2] will also be investigated. All schemes are briefly described
in Section 5.

2.1. Analysis of early hashing schemes

Early theoretical analysis of hashing schemes was done under the as-
sumption that hash function values are uniformly random and indepen-
dent. Precise analyses of the average and expected worst case behaviors
of the abovementioned schemes have been made, see for example [14, 18].
We mention just a few facts, disregarding asymptotically vanishing terms.
Note that some figures depend on implementation details – the below hold
for the implementations described in Section 5.

We first consider the expected number of memory probes needed by the
two “open addressing” schemes to insert a key in a hash table where an
α fraction of the table, 0 < α < 1, is occupied by keys. For Linear

Probing the expected number of probes during insertion is 1
2 (1+ 1

(1−α)2 ).

This coincides with the expected number of probes for unsuccessful lookups,
and with the number of probes needed for looking up the key if there are
no subsequent deletions. A deletion rearranges keys to the configuration
that would occur if the deleted key had never been inserted. In Double

Hashing the expected cost of an insertion is 1
1−α . As keys are never moved,

this coincides with the number of probes needed for looking up the key and
for deleting the key. If a key has not been inserted in the hash table since
the last rehash, the expected cost of looking it up (unsuccessfully) is 1

1−β ,
where β is the fraction of keys and “deleted” markers in the hash table. If
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the key still has a “deleted” marker in the table, the expected cost of the
unsuccessful lookup is one probe more.

For Chained Hashing with hash table size n/α, the expected length
of the list traversed during an unsuccessful lookup is α. This means that
the expected number of probes needed to insert a new key is 1 + α, which
will also be the number of probes needed to subsequently look up the key
(note that probes to pointers are not counted). A deletion results in the
data structure that would occur if the key had never been inserted.

In terms of number of probes, the above implies that, for any given α,
Chained Hashing is better than Double Hashing, which is again better
than Linear Probing. It should be noted, however, that the space used
by Chained Hashing is larger than that in the open addressing schemes
for the same α. The difference depends on the relative sizes of keys and
pointers.

The longest probe sequence in Linear Probing is of expected length
Ω(log n). For Double Hashing the longest successful probe sequence is
expected to be of length Ω(log n), and there is in general no sublinear
bound on the length of unsuccessful searches. The expected maximum
chain length in Chained Hashing is Θ(logn/ log log n).

Though the above results seem to agree with practice, the randomness
assumptions used for the analyses are questionable in applications. Carter
and Wegman [7] succeeded in removing such assumptions from the analysis
of Chained Hashing, introducing the concept of universal hash function
families. When implemented with a random function from Carter and
Wegman’s universal family, chained hashing has constant expected time per
dictionary operation (plus an amortized expected constant cost for resizing
the table). For a certain efficient hash function family of Siegel [32], Linear

Probing and Double Hashing provably satisfy the above performance
bounds [30, 31]. Siegel’s hash functions, summarized in Theorem 3.1, are
also used in Cuckoo Hashing.

2.2. Key rearrangement schemes

A number of (open addressing) hashing schemes have been proposed that
share a key feature with the scheme described in this paper, namely that
keys are moved around during insertions [3, 15, 19, 20, 28]. The main
focus in these schemes is to reduce the average number of probes needed
for finding a key in a (nearly) full table to a constant, rather than the
O(log n) average exhibited by standard open addressing. This is done by
occasionally moving keys forward in their probe sequences.

In our algorithm we rearrange keys in order to reduce the worst case
number of probes to a constant. A necessary condition for this is reuse of
hash function values, i.e., that keys are moved back in their probe sequence.
Backward moves were not used in any previous rearrangement scheme,
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presumably due to the difficulty that moving keys back does not give a
fresh, “random” placement. The thing that allows us to obtain worst case
efficient lookups is that we do not deal with full hash tables, but rather
hash tables that are less than half full. It was shown in [24] that in this case
there exists, with high probability, an arrangement that allows any key to
be found in two hash table probes. We show how to efficiently maintain
such an arrangement under updates of the key set.

Arrangements of keys with optimal worst case retrieval cost were in fact
already considered by Rivest in [28], where a polynomial time algorithm
for finding such an arrangement was given. Also, it was shown that if one
updates the key set, the expected number of keys that need to be moved to
achieve a new optimal arrangement is constant. (The analysis requires that
the hash table is sufficiently sparse, and assumes the hash function to be
truly random.) This suggests a dictionary that solves a small assignment
problem after each insertion and deletion. It follows from [24] and this
paper, that Rivest’s dictionary achieved worst case constant lookup time
and expected amortized constant update time, 8 years before an algorithm
with the same performance and randomness assumption was published by
Aho and Lee [1]. Further, we show that Siegel’s hash functions suffice for
the analysis. Last but not least, the algorithm we use for rearranging keys
is much simpler and more efficient than that suggested by Rivest.

Another key rearrangement scheme with similarities to Cuckoo Hash-

ing is Last-come-first-served Hashing [27], which has low variance on
search time as its key feature. It uses the same greedy strategy for moving
keys as is used in this paper, but there is no reuse of hash function values.

2.3. Hashing schemes with worst case lookup guarantee

Two-Way Chaining is an alternative to Chained Hashing that offers
O(log log n) maximal lookup time with high probability (assuming truly
random hash functions). The implementation that we consider represents
the lists by fixed size arrays of size O(log log n) (if a longer chain is needed,
a rehash is performed). To achieve linear space usage, one must then use
a hash table of size O(n/ log log n), implying that the average chain length
is Ω(log log n).

Another scheme with this worst case guarantee is Multilevel Adaptive
Hashing [5]. However, lookups can be performed in O(1) worst case time
if O(log log n) hash function evaluations, memory probes and comparisons
are possible in parallel. This is similar to the scheme described in this
paper, though we use only two hash function evaluations, memory probes
and comparisons.

A dictionary with worst case constant lookup time was first obtained
by Fredman, Komlós and Szemerédi [13], though it was static, i.e., did
not support updates. It was later augmented with insertions and deletions



6 PAGH AND RODLER

in amortized expected constant time by Dietzfelbinger et al. [10]. Diet-
zfelbinger and Meyer auf der Heide [11] improved the update performance
by exhibiting a dictionary in which operations are done in constant time
with high probability, namely at least 1− n−c, where c is any constant of
our choice. A simpler dictionary with the same properties was later devel-
oped [8]. When n = |U |1−o(1) a space usage of O(n) words is not within
a constant factor of the information theoretical minimum. The dictionary
of Brodnik and Munro [6] offers the same performance as [10], using O(B)
bits in all cases.

3. PRELIMINARIES

We assume that keys from U fit exactly in a single machine word, that
is, U = {0, 1}w. A special value ⊥ ∈ U is reserved to signal an empty cell
in hash tables. For Double Hashing an additional special value is used
to indicate a deleted key.

Our algorithm uses hash functions from a universal family.

Definition 3.1. A family {hi}i∈I , hi : U → R, is (c, k)-universal if, for
any k distinct elements x1, . . . , xk ∈ U , any y1, . . . , yk ∈ R, and uniformly
random i ∈ I , Pr[hi(x1) = y1, . . . , hi(xk) = yk] ≤ c/|R|k.

As an example, the family of all functions is (1, |U |)-universal. However,
for implementation purposes one needs families with much more succinct
memory representations. A standard construction of a (2, k)-universal fam-
ily for range R = {0, . . . , r − 1} and prime p > max(2w, r) is

{x 7→ ((

k−1
∑

l=0

alx
l) mod p) mod r | 0 ≤ a0, a1, . . . , ak−1 < p} . (1)

If U is not too large compared to k, there exists a space-efficient (2, k)-
universal family due to Siegel [32] that has constant evaluation time (how-
ever, the constant is not a small one).

Theorem 3.1 (Siegel). There is a constant c such that for, k = 2Ω(w),
there exists a (2, k)-universal family that uses space and initialization time
O(kc), and which can be evaluated in constant time.

Our restriction that keys are single words is not a serious one. Longer
keys can be mapped to keys of O(1) words by applying a random function
from a (O(1), 2)-universal family. There is such a family whose functions
can be evaluated in time linear in the number of input words [7]. It works
by evaluating a function from a (O(1), 2)-universal family on each word,
computing the bitwise exclusive or of the function values. (See [34] for an
efficient implementation). Such a function with range {0, 1}2 log(n)+c will,
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with probability 1−O(2c), be injective on S. In fact, with constant proba-
bility the function is injective on a given sequence of Ω(2c/2n) consecutive
sets in a dictionary of initial size n (see [10]). When a collision between
two elements of S occurs, everything is rehashed. If a rehash can be done
in expected O(n) time, the amortized expected cost of this is O(2−c/2)
per insertion. In this way we can effectively reduce the universe size to
O(n2), though the full keys still need to be stored to decide membership.
When c = O(log n) the reduced keys are of length O(log n). For any ε > 0,
Theorem 3.1 then provides a family of constant time evaluable (2, nΩ(1))-
universal hash functions, whose functions can be stored using space O(nε).

4. CUCKOO HASHING

Cuckoo Hashing is a dynamization of a static dictionary described in
[24]. The dictionary uses two hash tables, T1 and T2, each of length r, and
two hash functions h1, h2 : U → {0, . . . , r − 1}. Every key x ∈ S is stored
in cell h1(x) of T1 or h2(x) of T2, but never in both. Our lookup function
is

function lookup(x)
return T1[h1(x)] = x ∨ T2[h2(x)] = x

end

Two table accesses for lookup is in fact optimal among all dictionaries using
linear space, except for special cases, see [24].

Remark: The idea of storing keys in one out of two places given by hash
functions previously appeared in [16] in the context of PRAM simulation,
and in [2] for Two-Way Chaining.

It is shown in [24] that if r ≥ (1 + ε) n for some constant ε > 0 (i.e., the
tables are to be a bit less than half full), and h1, h2 are picked uniformly
at random from an (O(1), O(log n))-universal family, the probability that
there is no way of arranging the keys of S according to h1 and h2 is O(1/n).
By the discussion in Section 3 we may assume without loss of generality
that there is such a family, with constant evaluation time and negligible
space usage. A suitable arrangement of the keys was shown in [24] to be
computable in expected linear time, by a reduction to 2-sat.

We now consider a simple dynamization of the above. Deletion is of
course simple to perform in constant time, not counting the possible cost
of shrinking the tables if they are becoming too sparse. As for insertion, it
turns out that the “cuckoo approach”, kicking other keys away until every
key has its own “nest”, works very well. Specifically, if x is to be inserted
we first see if cell h1(x) of T1 is occupied. If not, we are done. Otherwise we
set T1[h1(x)] ← x anyway, thus making the previous occupant “nestless”.
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FIG. 1. Examples of Cuckoo Hashing insertion. Arrows show possibilities for
moving keys. (a) Key x is successfully inserted by moving keys y and z from one table
to the other. (b) Key x cannot be accommodated and a rehash is necessary.

This key is then inserted in T2 in the same way, and so forth iteratively, see
Figure 1(a). It may happen that this process loops, as shown in Figure 1(b).
Therefore the number of iterations is bounded by a value “MaxLoop” to be
specified in Section 4.1. If this number of iterations is reached, everything is
rehashed with new hash functions, and we try once again to accommodate
the nestless key.

Using the notation x↔ y to express that the values of variables x and y
are swapped, the following code summarizes the insertion procedure.

procedure insert(x)
if lookup(x) then return

loop MaxLoop times

if T1[h1(x)] = ⊥ then { T1[h1(x)]← x; return }
x↔ T1[h1(x)]
if T2[h2(x)] = ⊥ then { T2[h2(x)]← x; return }
x↔ T2[h2(x)]

end loop

rehash(); insert(x)
end

The above procedure assumes that each table remains larger than (1 +
ε) n cells. When no such bound is known, a test must be done to find
out when a rehash to larger tables is needed. Resizing of tables can be
done in amortized expected constant time per update by the usual dou-
bling/halving technique (see, e.g., [10]). The hash functions used will be
(O(1), MaxLoop)-universal, which means that they will act almost like
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truly random functions on any set of keys processed during the insertion
loop.

The lookup call preceding the insertion loop ensures robustness if the key
to be inserted is already in the dictionary. A slightly faster implementation
can be obtained if this is known not to occur.

Note that the insertion procedure is biased towards inserting keys in T1.
As will be seen in Section 5 this leads to faster successful lookups, due to
more keys being found in T1. This effect is even more pronounced if one
uses an asymmetric scheme where T1 is larger than T2. In both cases, the
insertion time is only slightly worse than that of a completely symmetric
implementation. Another variant is to use a single table for both hash
functions, but this requires keeping track of the hash function according to
which each key is placed. In the following we consider just the symmetric
two table scheme.

4.1. Analysis

Our analysis of the insertion procedure has three main parts:

1. We first exhibit some useful characteristics of the behavior of the in-
sertion procedure.

2. We then derive a bound on the probability that the insertion procedure
uses at least t iterations.

3. Finally we argue that the procedure uses expected amortized constant
time.

Behavior of the Insertion Procedure

The simplest behavior of the insertion procedure occurs when it does
not visit any hash table cell more than once. In this case it simply runs
through a sequence x1, x2, . . . , of nestless keys with no repetitions, moving
each key from one table to the other.

If, at some point, the insertion procedure returns to a previously visited
cell, the behavior is more complicated, as shown in Figure 2. The key xi

in the first previously visited cell will become nestless for the second time
(occurring at positions i and j > i in the sequence) and be put back in its
original cell. Subsequently all keys xi−1, . . . , x1 will be moved back where
they were at the start of the insertion (assuming that the maximum number
of iterations is not reached). In particular, x1 will end up nestless again,
and the procedure will try placing it in the second table. At some point
after this there appears a nestless key xl that is either moved to a vacant
cell or a previously visited cell (again assuming that the maximum number
of iterations is not reached). In the former case the procedure terminates.
In the latter case a rehash must be performed, since we have a “closed



10 PAGH AND RODLER

loop” of l− i + 1 keys hashing to only l− i cells. This means that the loop
will run for the maximum number of iterations, followed by a rehash.

Lemma 4.1. Suppose that the insertion procedure does not enter a closed
loop. Then for any prefix x1, x2, . . . , xp of the sequence of nestless keys,
there must be a subsequence of at least p/3 consecutive keys without repeti-
tions, starting with an occurrence of the key x1, i.e., the key being inserted.

Proof. In the case where the insertion procedure never returns to a
previously visited cell, the prefix itself is a sequence of p distinct nest-
less keys starting with x1. Otherwise, the sequence of nestless keys is
as shown in Figure 2. If p < i + j, the first j − 1 ≥ i+j−1

2 ≥ p/2
nestless keys form the desired sequence. For p ≥ i + j, one of the se-

quences x1, . . . , xj−1 and xj+i−1, . . . , xp must have length at least p/3.

Probability Bounds

We now consider the probability that the insertion loop runs for at least
t iterations. For t > MaxLoop the probability is of course 0. Otherwise, by
the above analysis, iteration number t is performed in two (not mutually
exclusive) situations:

1. The insertion procedure has entered a “closed loop”, i.e., xl in Figure 2
was moved to a previously visited cell, for l ≤ 2t.

2. The insertion procedure has processed a sequence of at least (2t−1)/3
consecutive nestless keys starting with the newly inserted key.

In the first situation let v ≤ l denote the number of distinct nestless keys.
The number of ways in which the closed loop can be formed is less than
v2rv−1nv−1 (v2 possible values for i and j, rv−1 possible choices of cells,
and nv−1 possible choices of keys other than x1). Since v ≤MaxLoop, the
hash functions are (c, v)-universal. This means that each possibility occurs
with probability at most c2r−2v . Summing over all possible values of v,
and using r/n > 1+ ε, we get that the probability of situation 1 is at most:

l
∑

v=3

v2rv−1nv−1c2r−2v ≤
c2

rn

∞
∑

v=3

v2(n/r)v <
13 c2/ε

n2
= O(1/n2) .

The above derivation follows a suggestion of Sanders and Vöcking [29], and
improves the O(1/n) bound in the conference version of this paper [25].

In the second situation there is a sequence of distinct nestless keys
b1, . . . , bv, v ≥ (2t − 1)/3, such that b1 is the key to be inserted, and
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FIG. 2. Stages of an insertion of key x1, involving the movement of keys x1, . . . , xl.
Boxes correspond to cells in either of the two tables, and arcs show possibilities for
moving keys. A bold arc shows where the nestless key is to be inserted.
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such that for either (β1, β2) = (1, 2) or (β1, β2) = (2, 1):

hβ1
(b1) = hβ1

(b2), hβ2
(b2) = hβ2

(b3), hβ1
(b3) = hβ1

(b4), . . . (2)

Given b1 there are at most nv−1 possible sequences of v distinct keys. For
any such sequence and any of the two choices of (β1, β2), the probability
that the b− 1 equations in (2) hold is bounded by c r−(v−1), since the hash
functions were chosen from a (c, MaxLoop)-universal family. Hence the
probability that there is any sequence of length v satisfying (2), and thus
the probability of situation 2, is bounded by

2c2 (n/r)v−1 ≤ 2c2 (1 + ε)−(2t−1)/3+1 . (3)

Concluding the Analysis

From now on we restrict attention to MaxLoop = O(n). From (3) it fol-
lows that the expected number of iterations in the insertion loop is bounded
by

1 +

MaxLoop
∑

t=2

2c2 (1 + ε)−(2t−1)/3+1 + O(1/n2) (4)

≤ 1 + O(MaxLoop
n2 ) + 2c2

∞
∑

t=0

((1 + ε)−2/3)t

= O(1 + 1
1−(1+ε)−2/3 )

= O(1 + 1/ε) .

Finally, we consider the cost of rehashing, which occurs if the insertion
loop runs for t = MaxLoop iterations. By the previous section, the proba-
bility that this happens because of entering a closed loop is O(1/n2). Set-
ting MaxLoop = d3 log1+ε ne, the probability of rehashing without entering
a closed loop is, by (3), at most

2c2 (1 + ε)−(2MaxLoop−1)/3+1 = O(1/n2)

Altogether, the probability that any given insertion causes a rehash is
O(1/n2). In particular, the n insertions performed during a rehash all
succeed (i.e., cause no further rehash) with probability 1 − O(1/n). The
expected time used per insertion is O(1), so the total expected time for
trying to insert all keys is O(n). As the probability of having to start over
with new hash functions is bounded away from 1, the total expected time
for a rehash is O(n). Thus, for any insertion the expected time used for
rehashing is O(1/n).
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Summing up, we have shown that the expected time for insertion is
bounded by a constant. The small probability of rehashing in fact implies
that also the variance of the insertion time is constant.

5. EXPERIMENTS

To examine the practicality of Cuckoo Hashing we experimentally
compare it to three well known hashing methods, as described in [18, Sec-
tion 6.4]: Chained Hashing (with separate chaining), Linear Probing

and Double Hashing. We also consider Two-Way Chaining [2].
The first three methods all attempt to store a key x at position h(x) in

a hash table. They differ in the way collisions are resolved, i.e., in what
happens when two or more keys hash to the same location.

Chained Hashing. A chained list is used to store all keys hashing to a
given location.

Linear Probing. A key is stored in the next empty table entry. Lookup
of key x is done by scanning the table beginning at h(x) and ending when
either x or an empty table entry is found. When deleting, some keys may
have to be moved back in order to fill the hole in the lookup sequence,
see [18, Algoritm R] for details.

Double Hashing. Insertion and lookup are similar to Linear Prob-

ing, but instead of searching for the next position one step at a time, a
second hash function value is used to determine the step size. Deletions
are handled by putting a “deleted” marker in the cell of the deleted key.
Lookups skip over deleted cells, while insertions overwrite them.

The fourth method, Two-Way Chaining, can be described as two in-
stances of Chained Hashing. A key is inserted in one of the two hash
tables, namely the one where it hashes to the shortest chain. A cache-
friendly implementation, as recently suggested in [4], is to simply make
each chained list a short, fixed size array. If a longer list is needed, a
rehash must be performed.

5.1. Previous Experimental Results.

Although the dictionaries with worst case constant lookup time surveyed
in Sect. 2 leave little to improve from a theoretical point of view, large con-
stant factors and complicated implementation hinder their direct practical
use. For example, in the “dynamic perfect hashing” scheme of [10] the
upper bound on space is 35n words. The authors of [10] refer to a more
practical variant due to Wenzel that uses space comparable to that of bi-
nary search trees.

According to [17] the implementation of this variant in the LEDA li-
brary [23], described in [35], has average insertion time larger than that
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of AVL trees for n ≤ 217, and more than four times slower than inser-
tions in chained hashing1. The experimental results listed in [23, Table
5.2] show a gap of more than a factor of 6 between the update performance
of chained hashing and dynamic perfect hashing, and a factor of more than
2 for lookups2.

Silverstein [33] reports that the space upper bound of the dynamic per-
fect hashing scheme of [10] is quite pessimistic compared to what can be
observed when run on a subset of the DIMACS dictionary tests [22]. He
goes on to explore ways of improving space as well as time, improving both
the observed time and space by a factor of roughly three. Still, the im-
proved scheme needs 2 to 3 times more space than an implementation of
linear probing to achieve similar time per operation. Silverstein also con-
siders versions of the data structures with packed representations of the
hash tables. In this setting the dynamic perfect hashing scheme was more
than 50% slower than linear probing, using roughly the same amount of
space.

Is seems that recent experimental work on “classical” dictionaries (that
do not have worst case constant lookup time) is quite limited. In [17] it is
reported that chained hashing is superior to an implementation of dynamic
perfect hashing in terms of both memory usage and speed.

5.2. Data Structure Design and Implementation

We consider positive 32 bit signed integer keys and use 0 as ⊥. The data
structures are robust in that they correctly handle attempts to insert an
element already in the set, and attempts to delete an element not in the
set. During rehashes this is known not to occur and slightly faster versions
of the insertion procedure are used.

Our focus is on achieving high performance dictionary operations with
a reasonable space usage. By the load factor of a dictionary we will un-
derstand the size of the set relative to the memory used3. As seen in [18,
Figure 44] the speed of Linear Probing and Double Hashing degrades
rapidly for load factors above 1/2. On the other hand, none of the schemes
improve much for load factors below 1/4. As Cuckoo Hashing only works
when the size of each table is larger than the size of the set, we can only
perform a comparison for load factors less than 1/2. To allow for doubling
and halving of the table size, we allow the load factor to vary between
1/5 and 1/2, focusing especially on the “typical” load factor of 1/3. For
Cuckoo Hashing and Two-Way Chaining there is a chance that an
insertion may fail, causing a “forced rehash”. If the load factor is larger

1On a Linux PC with an Intel Pentium 120 MHz processor.
2On a 300 MHz SUN ULTRA SPARC.
3For Chained Hashing, the notion of load factor traditionally disregards the space

used for chained lists, but we desire equal load factors to imply equal memory usage.
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than a certain threshold, somewhat arbitrarily set to 5/12, we use the op-
portunity to double the table size. By our experiments this only slightly
decreases the average load factor.

Apart from Chained Hashing, the schemes considered have in com-
mon the fact that they have only been analyzed under randomness as-
sumptions that are currently impractical to realize. However, experience
shows that rather simple and efficient hash function families yield per-
formance close to that predicted under stronger randomness assumptions.
We use a function family from [9] with range {0, 1}q for positive inte-
ger q. For every odd a, 0 < a < 2w, the family contains the function
ha(x) = (ax mod 2w) div 2w−q. Note that evaluation can be done very
efficiently by a 32 bit multiplication and a shift. However, this choice of
hash function restricts us to consider hash tables whose sizes are powers
of two. A random function from the family (chosen using C’s rand func-
tion) appears to work fine with all schemes except Cuckoo Hashing. For
Cuckoo Hashing we experimented with various hash functions and found
that Cuckoo Hashing was rather sensitive to the choice of hash function.
It turned out that the exclusive or of three independently chosen functions
from the family of [9] was fast and worked well. We have no good explana-
tion for this phenomenon. For all schemes, various alternative hash families
were tried, with a decrease in performance.

All methods have been implemented in C. We have striven to obtain the
fastest possible implementation of each scheme. Specific choices made and
details differing from the references are:

Chained Hashing. C’s malloc and free functions were found to be a
performance bottleneck, so a simple “freelist” memory allocation scheme is
used. Half of the allocated memory is used for the hash table, and half for
list elements. If the data structure runs out of free list elements, its size is
doubled. We store the first element of each linked list directly in the hash
table. This often saves one cache miss. It also slightly improves memory
utilization, in the expected sense. This is because every non-empty chained
list is one element shorter and because we expect more than half of the hash
table cells to contain a linked list for the load factors considered here.

Double Hashing. To prevent the tables from clogging up with deleted
cells, resulting in poor performance for unsuccessful lookups, all keys are
rehashed when 2/3 of the hash table is occupied by keys and “deleted”
markers. The fraction 2/3 was found to give a good tradeoff between the
time for insertion and unsuccessful lookups.

Linear Probing. Our first implementation, like that in [33], employed
deletion markers. However, we found that using the deletion method de-
scribed in [18, Algoritm R] was considerably faster, as far fewer rehashes
were needed.
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Two-Way Chaining. We allow four keys in each bucket. This is enough
to keep the probability of a forced rehash low for hundreds of thousands of
keys, by the results in [4]. For larger collections of keys one should allow
more keys in each bucket, resulting in general performance degradation.

Cuckoo Hashing. The architecture on which we experimented could
not parallelize the two memory accesses in lookups. Therefore we only
evaluate the second hash function after the first memory lookup has shown
unsuccessful.

Some experiments were done with variants of Cuckoo Hashing. In
particular, we considered Asymmetric Cuckoo, in which the first table
is twice the size of the second one. This results in more keys residing in the
first table, thus giving a slightly better average performance for successful
lookups. For example, after a long sequence of alternate insertions and
deletions at load factor 1/3, we found that about 76% of the elements
resided in the first table of Asymmetric Cuckoo, as opposed to 63% for
Cuckoo Hashing. There is no significant slowdown for other operations.
We will describe the results for Asymmetric Cuckoo when they differ
significantly from those of Cuckoo Hashing.

5.3. Setup

Our experiments were performed on a PC running Linux (kernel ver-
sion 2.2) with an 800 MHz Intel Pentium III processor, and 256 MB
of memory (PC100 RAM). The processor has a 16 KB level 1 data cache
and a 256 KB level 2 “advanced transfer” cache. As will be seen, our re-
sults nicely fit a simple model parameterized by the cost of a cache miss
and the expected number of probes to “random” locations. They are thus
believed to have significance for other hardware configurations. An advan-
tage of using the Pentium processor for timing experiments is its rdtsc

instruction which can be used to measure time in clock cycles. This gives
access to very precise data on the behavior of algorithms. In our case it
also supplies a way of discarding measurements significantly disturbed by
interrupts from hardware devices or the process scheduler, as these show
up as a small group of timings significantly separated from all other tim-
ings. Programs were compiled using the gcc compiler version 2.95.2, using
optimization flags -O9 -DCPU=586 -march=i586 -fomit-frame-pointer

-finline-functions -fforce-mem -funroll-loops -fno-rtti. As men-
tioned earlier, we use a global clock cycle counter to time operations. If the
number of clock cycles spent exceeds 5000, and there was no rehash, we
conclude that the call was interrupted, and disregard the result (it was em-
pirically observed that no operation ever took between 2000 and 5000 clock
cycles). If a rehash is made, we have no way of filtering away time spent in
interrupts. However, all tests were made on a machine with no irrelevant
user processes, so disturbances should be minimal. On our machine it took
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32 clock cycles to call the rdtsc instruction. These clock cycles have been
subtracted from the results.

5.4. Results

Dictionaries of Stable Size

Our first test was designed to model the situation in which the size of
the dictionary is not changing too much. It considers a sequence of mixed
operations generated at random. We constructed the test operation se-
quences from a collection of high quality random bits publicly available on
the Internet [21]. The sequences start by insertion of n distinct random
keys, followed by 3n times four operations: A random unsuccessful lookup,
a random successful lookup, a random deletion, and a random insertion.
We timed the operations in the “equilibrium”, where the number of ele-
ments is stable. For load factor 1/3 our results appear in Figure 3, which
shows an average over 10 runs. As Linear Probing was consistently faster
than Double Hashing, we chose it as the sole open addressing scheme in
the plots. Time for forced rehashes was added to the insertion time. The
results had a large variance, over the 10 runs, for sets of size 212 to 216.
Outside this range the extreme values deviated from the average by less
than about 7%. The large variance sets in when the data structure starts
to fill the level 2 cache. We believe it is due to other processes evicting
parts of the data structure from cache.

As can be seen, the time for lookups is almost identical for all schemes
as long as the entire data structure fits in level 2 cache, i.e., for n <
216/3. After this the average number of random memory accesses (with
the probability of a cache miss approaching 1) shows up. This makes linear
probing an average case winner, with Cuckoo Hashing and Two-Way

Chaining following about 40 clock cycles behind. For insertion the number
of random memory accesses again dominates the picture for large sets,
while the higher number of in-cache accesses and more computation makes
Cuckoo Hashing, and in particular Two-Way chaining, relatively slow
for small sets. The cost of forced rehashes sets in for Two-Way Chaining

for sets of more than a million elements, at which point better results may
have been obtained by a larger bucket size. For deletion Chained Hashing

lags behind for large sets due to random memory accesses when freeing list
elements, while the simplicity of Cuckoo Hashing makes it the fastest
scheme. We suspect that the slight rise in time for the largest sets in the
test is due to saturation of the bus, as the machine runs out of memory
and begins swapping.

At this point we should mention that the good cache utilization of Lin-

ear Probing and Two-Way Chaining depends on the cache lines being
considerably larger than keys (and any associated information placed to-
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FIG. 3. The average time per operation in equilibrium for load factor 1/3.

gether with keys). If this is not the case, it causes the number of cache
misses to rise significantly. The other schemes discussed here do not dete-
riorate in this way.

Growing and Shrinking Dictionaries

The second test concerns the cost of insertions in growing dictionaries
and deletions in shrinking dictionaries. This will be different from the
above due to the cost of rehashes. Together with Figure 3 this should give
a fairly complete picture of the performance of the data structures under
general sequences of operations. The first operation sequence inserts n dis-
tinct random keys, while the second one deletes them. The plot is shown in
Figure 4. For small sets the time per operation seems unstable, and dom-
inated by memory allocation overhead (if minimum table size 210 is used,
the curves become monotone). For sets of more than 212 elements the
largest deviation from the averages over 10 runs was about 6%. Disregard-
ing the constant minimum amount of memory used by any dictionary, the
average load factor during insertions was within 2% of 1/3 for all schemes
except Chained Hashing whose average load factor was about 0.31. Dur-
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FIG. 4. The average time per insertion/deletion in a growing/shrinking dictionary
for average load factor ≈ 1/3.

ing deletions all schemes had average load factor 0.28. Again the fastest
method is Linear Probing, followed by Chained Hashing and Cuckoo

Hashing. This is largely due to the cost of rehashes.

DIMACS Tests

Access to data in a dictionary is rarely random in practice. In particular,
the cache is more helpful than in the above random tests, for example due
to repeated lookups of the same key, and deletion of short-lived keys. As
a rule of thumb, the time for such operations will be similar to the time
when all of the data structure is in cache. To perform actual tests of the
dictionaries on more realistic data, we chose a representative subset of the
dictionary tests of the 5th DIMACS implementation challenge [22]. The
tests involving string keys were preprocessed by hashing strings to 32 bit
integers, as described in Section 3. This preserves, with high probability,
the access pattern to keys. For each test we recorded the average time per
operation, not including the time used for preprocessing. The minimum
and maximum of six runs can be found in Tables 5 and 6, which also lists
the average load factor. Linear probing is again the fastest, but mostly just
20-30% faster than the Cuckoo schemes.

The Number of Cache Misses During Insertion

We have seen that the number of random memory accesses (i.e., cache
misses) is critical to the performance of hashing schemes. Whereas there is
a very precise understanding of the probe behavior of the classic schemes
(under suitable randomness assumptions), the analysis of the expected time
for insertions in Section 4.1 is rather crude, establishing just a constant
upper bound. One reason that our calculation does not give a very tight
bound is that we use a pessimistic estimate on the number of key moves
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Joyce Eddington

Linear 42 - 45 (.35) 26 - 27 (.40)
Double 48 - 53 (.35) 32 - 35 (.40)
Chained 49 - 52 (.31) 36 - 38 (.28)

A.Cuckoo 47 - 50 (.33) 37 - 39 (.32)
Cuckoo 57 - 63 (.35) 41 - 45 (.40)

Two-Way 82 - 84 (.34) 51 - 53 (.40)

FIG. 5. Average clock cycles per operation and load factors for two DIMACS string
tests.

3.11-Q-1 Smalltalk-2 3.2-Y-1

Linear 99 - 103 (.30) 68 - 72 (.29) 85 - 88 (.32)
Double 116 - 142 (.30) 77 - 79 (.29) 98 - 102 (.32)
Chained 113 - 121 (.30) 78 - 82 (.29) 90 - 93 (.31)

A.Cuckoo 166 - 168 (.29) 87 - 95 (.29) 95 - 96 (.32)
Cuckoo 139 - 143 (.30) 90 - 96 (.29) 104 - 108 (.32)

Two-Way 159 - 199 (.30) 111 - 113 (.29) 133 - 138 (.32)

FIG. 6. Average clock cycles per operation and load factors for three DIMACS
integer tests.
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needed to accommodate a new element in the dictionary. Often a free cell
will be found even though it could have been occupied by another key in
the dictionary. We also pessimistically assume that a large fraction of key
moves will be spent backtracking from an unsuccessful attempt to place
the new key in the first table.

Figure 7 shows experimentally determined values for the average number
of probes during insertion for various schemes and load factors below 1/2.
We disregard reads and writes to locations known to be in cache, and
the cost of rehashes. Measurements were made in “equilibrium” after 105

insertions and deletions, using tables of size 215 and truly random hash
function values. It is believed that this curve is independent of the table
size (up to vanishing terms). The curve for Linear Probing does not
appear, as the number of non-cached memory accesses depends on cache
architecture (length of the cache line), but it is typically very close to 1. The
curve for Cuckoo Hashing seems to be 2+1/(4+8α) ≈ 2+1/(4ε). This is
in good correspondence with (4) of the analysis in Section 4.1. As noted in
Section 4, the insertion algorithm of Cuckoo Hashing is biased towards
inserting keys in T1. If we instead of starting the insertion in T1 choose
the start table at random, the number of cache misses decreases slightly for
insertion. This is because the number of free cells in T1 increases as the load
balance becomes even. However, this also means a slight increase in lookup
time. Also note that since insertion checks if the element is already inserted,
Cuckoo Hashing uses at least two cache misses. The initial lookup can be
exploited to get a small improvement in insertion performance, by inserting
right away when either cell T1[h1(x)] or T2[h2(x)] is vacant. It should be
remarked that the highest possible load factor for Two-Way Chaining is
O(1/ log log n).

Since lookup is very similar to insertion in Chained Hashing, one could
think that the number of cache misses would be equal for the two oper-
ations. However, in our implementation, obtaining a free cell from the
freelist may result in an extra cache miss. This is the reason why the curve
for Chained Hashing in the figure differs from a similar plot in Knuth [18,
Figure 44].

5.9. Model

In this section we look at a simple model of the time it takes to perform a
dictionary operation, and note that our results can be explained in terms of
this model. On a modern computer, memory speed is often the bottleneck.
Since the operations of the investigated hashing methods mainly perform
reads and writes to memory, we will assume that cache misses constitute
the dominant part of the time needed to execute a dictionary operation.
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FIG. 7. The average number of random memory accesses for insertion.

This leads to the following model of the time per operation.

Time = O + N · R · (1− C/T ) , (5)

where the parameters of the model are described by

• O – Constant overhead of the operation.

• R – Average number of memory accesses.

• C – Cache size.

• T – Size of the hash tables.

• N – Cost of a non-cache read.

The term R · (1 − C/T ) is the expected number of cache misses for the
operations with (1−C/T ) being the probability that a random probe into
the tables results in a cache miss. Note that the model is not valid when
the table size T is smaller than the cache size C. The size C of the cache
and the size T of the dictionary are well known. From Figure 7 we can, for
the various hashing schemes and for a load factor of 1/3, read the average
number R of memory accesses needed for inserting an element. Note that
several accesses to consecutive elements in the hash table are counted as
one random access, since the other accesses are then in cache. The overhead
of an operation, O, and the cost of a cache miss, N , are unknown factors
that we will estimate.

Performing experiments, reading and writing to and from memory, we
observed that the time for a read or a write to a location known not to be
in cache could vary dramatically depending on the state of the cache. For
example, when a cache line is to be used for a new read, the time used is
considerably higher if the old contents of the cache line has been written to,
since the old contents must then first be moved to memory. For this reason
we expect parameter N to depend slightly on both the particular dictionary
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methods and the combination of dictionary operations. This means that
R and T are the only parameters not dependent on the methods used.

Method N O

Cuckoo 71 142
Two-Way 66 157
Chained 79 78
Linear 88 89

Average 76 -

FIG. 8. Estimated parameters according to the model for insertion.

Using the timings from Figure 3 and the average number of cache misses
for insert observed in Figure 7, we estimated N and O for the four hashing
schemes. As mentioned, we believe the slight rise in time for the largest sets
in the tests of Figure 3 to be caused by other non-cache related factors. So
since the model is only valid for T ≥ 216, the two parameters were estimated
for timings with 216 ≤ T ≤ 223. The results are shown in Table 8. As can
be seen from the table, the cost of a cache miss varies slightly from method
to method. The largest deviation from the average is about 15%.
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FIG. 9. Model versus observed data.

To investigate the accuracy of our model we plotted in Figure 9 the
estimated curves for insertion together with the observed curves used for
estimating the parameters. As can be seen, the simple model explains
the observed values quite nicely. The situation for the other operations is
similar.
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Having said this, we must admit that the values of N and O estimated
for the schemes cannot be accounted for. In particular, it is clear that the
true behavior of the schemes is more complicated than suggested by the
model.

6. CONCLUSION

We have presented a new dictionary with worst case constant lookup
time. It is very simple to implement, and has average case performance
comparable to the best previous dictionaries. Earlier schemes with worst
case constant lookup time were more complicated to implement and had
worse average case performance. Several challenges remain. First of all an
explicit practical hash function family that is provably good for the scheme
has yet to be found. For example, future advances in explicit expander
graph construction could make Siegel’s hash functions practical. Secondly,
we lack a precise understanding of why the scheme exhibits low constant
factors. In particular, the curve of Figure 7 needs to be explained. Another
point to investigate is whether using more tables yields practical dictionar-
ies. Experiments in [26] suggest that space utilization could be improved
to more than 80%, but it remains to be seen how this would affect insertion
performance.
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Peter Sanders and Berthold Vöcking for useful comments and discussions
on Cuckoo Hashing.

REFERENCES

1. Alfred V. Aho and David Lee. Storing a dynamic sparse table. In Proceedings of the
23rd Annual Symposium on Foundations of Computer Science (FOCS ’82), pages
55–60, Los Alamitos, CA, 1986. IEEE Comput. Soc. Press.

2. Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. Balanced allocations.
SIAM J. Comput., 29(1):180–200 (electronic), 1999.

3. Richard P. Brent. Reducing the retrieval time of scatter storage techniques. Com-
munications of the ACM, 16(2):105–109, February 1973. Modification of open ad-
dressing with double hashing to reduce the average number of probes for a successful
search.

4. Andrei Broder and Michael Mitzenmacher. Using multiple hash functions to improve
IP lookups. Proceedings of INFOCOM 2001, 2001.

5. Andrei Z. Broder and Anna R. Karlin. Multilevel adaptive hashing. In Proceedings of
the 1st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’90), pages
43–53. ACM Press, New York, 2000.

6. Andrej Brodnik and J. Ian Munro. Membership in constant time and almost-
minimum space. SIAM J. Comput., 28(5):1627–1640 (electronic), 1999.

7. J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions. J.
Comput. System Sci., 18(2):143–154, 1979.



CUCKOO HASHING 25

8. Martin Dietzfelbinger, Joseph Gil, Yossi Matias, and Nicholas Pippenger. Polynomial
hash functions are reliable (extended abstract). In Proceedings of the 19th Interna-
tional Colloquium on Automata, Languages and Programming (ICALP ’92), volume
623 of Lecture Notes in Computer Science, pages 235–246. Springer-Verlag, Berlin,
1992.

9. Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and Martti Penttonen. A
reliable randomized algorithm for the closest-pair problem. Journal of Algorithms,
25(1):19–51, 1997. doi:10.1006/jagm.1997.0873.

10. Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Heide,
Hans Rohnert, and Robert E. Tarjan. Dynamic perfect hashing: Upper and lower
bounds. SIAM J. Comput., 23(4):738–761, 1994.

11. Martin Dietzfelbinger and Friedhelm Meyer auf der Heide. A new universal class
of hash functions and dynamic hashing in real time. In Proceedings of the 17th
International Colloquium on Automata, Languages and Programming (ICALP ’90),
volume 443 of Lecture Notes in Computer Science, pages 6–19. Springer-Verlag,
Berlin, 1990.

12. Arnold I. Dumey. Indexing for rapid random access memory systems. Computers
and Automation, 5(12):6–9, 1956.

13. Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table
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