
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 18, 143-154 (1979)

Universal Classes of Hash Functions

J. LAWRENCE CARTER AND MARK N. WEGMAN

IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598

Received August 8, 1977; revised August 10, 1978

This paper gives an input independent average linear time algorithm for storage and
retrieval on keys. The algorithm makes a random choice of hash function from a suitable
class of hash functions. Given any sequence of inputs the expected time (averaging over all
functions in the class) to store and retrieve elements is linear in the length of the sequence.
The number of references to the data base required by the algorithm for any input is
extremely close to the theoretical minimum for any possible hash function with randomly
distributed inputs. We present three suitable classes of hash functions which also can be
evaluated rapidly. The ability to analyze the cost of storage and retrieval without worrying
about the distribution of the input allows as corollaries improvements on the bounds of
several algorithms.

A program may be viewed as solving a class of problems. Each input, in this view,
is an instance of a problem from that class. The answer given by the program is, one
hopes, a correct solution to the problem. Ordinarily, when one talks about the average
performance of a program, one averages over the class of problems the program can
solve. Gill [3], Rabin [8], and Solovay and Strassen [ll] have used a different approach
on some classes of problems. They suggest that the program randomly choose an
algorithm from a class of algorithms which solve the problem. They are able to give
a bound, which is independent of the input, for the average performance of the class
of algorithms. Their approach is valuable when this bound is better than the performance
of any known single algorithm on that algorithm’s worst case. Some of the difficulties
which this approach overcomes are the following:

(1) Classical analysis (averaging over the class of inputs) must make an assumption
about the distribution of the inputs. This assumption may not hold in a particular
application. If not, a new analysis must be performed (if possible).

(2) Often the designer of a system will not know the applications that system
will be put to and will shy away from algorithms whose performance is dependent
on the distribution of the data: For example, quicksort is a sorting algorithm which
has good performance on randomly ordered sequences, but happens to perform poorly
when the input is already almost sorted. It would be a mistake to provide quicksort as a
general purpose library sorting routine since, for instance, business applications often
deal with nearly sorted files.

143
0022~OOOO/79/020143-12$02OO/O

Copyright 0 1979 by Academic Press, Inc.
All rights of reproduction in any form reserved.

144 CARTER AND WEGMAN

(3) If the program is presented with a worst-case input, there is no way to avoid
the resulting poor performance. However, if there were a class of algorithms to choose
from and the program could recognize when a particular algorithm was running slowly
on a given input, then it could possibly choose a different algorithm.

In this paper, we apply these notions to the use of hashing for storage and retrieval,
and suggest that a class of hash functions be used. We show that if the class of functions
is chosen properly, then the average performance of the program on any input will be
comparable to the performance of a single function constructed with knowledge of the
input. We present several classes of hash functions which insure that every sample
chosen from the input space will be distributed evenly by enough of the functions
to compensate for the poor performance of the algorithm when an unlucky choice of
function is made.

A brief outline of our paper follows. After introducing some notation, we define a
property of classes of functions: universal, . We show that any class of functions that is
universal, has the desired properties. We then exhibit several universal, classes of func-
tions which can be evaluated easily. Finally we give several examples of the use of these
functions.

NOTATION

If S is a set, 1 S 1 will denote the number of elements in 5’. If x is a real number, then
1x1 means the least integer 3x. If x and y are bit strings, then x @ y is the exclusive-or
of x and y. 2, will represent the integers mod n. All hash functions map a set A into
a set B. We will always assume 1 A 1 > / B 1. A is sometimes called the set of possible
keys, and B the set of indices. If f is a hash function and x, y E A, we define

w%Y) = 1;
if x # Y and f(s) = f(y)
otherwise

If 6,(x, y) = 1, then we say that x and y collide under f. If f, x or y is replaced in 6,(x, y)
by a set, we sum over all the elements in the set. Thus, if H is a collection of hash func-
tions, x E A and S C A then &(x, S) means

Notice that the order of summation does not matter.

PROPERTIES OF UNIVERSAL CLASSES

Let H be a class of functions from A to B. We say that H is universal, if for all x, y
in A, 6,(x, y) < 1 H //I B I. That is, H is universal, if no pair of distinct keys collide
under more than (1 /I B I)th of the functions. The subscript “2” is intended to emphasize

UNIVERSAL CLASSES OF HASH FUNCTIONS 145

that the definition constrains the behavior of H only on pairs of elements of A. It turns
out that this is powerful enough for many purposes, as the propositions of this section
suggest. However, for some applications of hashing, it is desirable to have a class of
functions which distribute larger subsets of A in a uniform manner. This may be the
subject of a future paper.

Proposition 1 shows that the bound on 6,(x, y) in the definition of universal, is tight
when 1 A / is much larger than 1 B /. Notice that in most applications of hashing, 1 A I
is indeed much larger than j B j. For example, a compiler might typically handle 1000
variables from a class of all possible 7 character identifiers. A reasonable choice for B
would therefore be 1000, while 1 A \ is 26’.

PROPOSITION 1. Given any collection H of hush functions (not necessarily universal,),
there exist x, y E A such that

S,(x,y) >#-E.

Proof. In the proof, we first derive a lower bound on the number of collisions under
one function in H &(A, A), then use this to give a lower bound on the total number
of collisions under all functions &(A, A), and finally use the pigeon hole principle
to conclude there must be two elements of A which collide under 1 A (of the functions.

Leta=IA~,b=[B[andf~H.ForeachiEB,letAibethesetofelementsofA
which are mapped into i byf, and let ai = j Ai I. ?$(A, , Aj) = 0 for i # j since elements
of Ai are mapped into i, and therefore cannot collide with elements from A, . However,
each element of Ai collides with every other element of Ai, and so &(Ai , Ai) = ai(a, - 1).
Thus, ?+(A, A) = CisB &, 6,(Ai , A,) = CioB 6?(A, , Ai) = Ciea (ai - ai). It is known
that this summation is minimized when the ai’s are of the same size, that is, when ai = a/b
for each i E B. Thus, for each f E H, 6,(A, A) 3 b((a/b)2 - a/b) = a2(l/b - l/a).

Taking the sum over the 1 H / functions in H, we obtain S,(A, A) 3 a2 1 H j (1 /b - 1 /a).
The &,(A, A) on the left side of this equation is the sum of the a2 terms of the form

6,(x, y), where X, y E A. When x = y, 6,(x, y) = 0. Thus, the sum of fewer than
a2 non-zero terms is as) H 1(1/b - l/a). Th e 1 eon hole principle implies there exist p’g
X, y E A with x # y such that 8,(x, y) > / H \(I /b - l/a). 1

In the remainder of this section, we derive consequences of the definition of universal, .
These results are not particularly deep but are intended to demonstrate the usefulness
of a universal, class.

One application of hash functions is to implement an associative memory. Briefly,
an associative memory can perform the operations: Store (Key, Data), which stores
“Data” under the identifier “Key” and overwrites any data previously associated with
“Key”; Retrieve (Key), which returns the data associated with “Key” or “Nil” if there
is no such data; and Delete (Key). One method of implementing an associative memory
uses a hash function f and an array of size 1 B 1 of linked lists. Given a Store, Retrieve
or Delete request, f is applied to the given key. The resulting index is used to designate
a linked list where the key and its associated data are to be stored. This list is searched
linearly to determine if the key has been previously stored. See [1, pages 111-1131 for

146 CARTER AND WEGMAN

more details. In this associative memory system, the time required to perform an operation
involving the key x is less than some linear function of the length of the list indexed
byf(x). If S is the set of keys which have been the subject of a Store, this list is of length
1 + 6,(x, S). The next proposition calculates the expected length of this list. Once
again, we emphasize that this result holds for any x and S, and that the average is over
the class of hash functions.

PROPOSITION 2. Let x be any element of A and S any subset of A. Let f be a function
chosen randomly from a universal, class of functions (with equal probabilities on the functions.)
Then the mean value of 6,(x, S) <) S j/l B 1.

Proof. Mean value of &(x, S) = , H , foH -!- c S,(x, S)

= & zs S& Y> (by notation)
jg ’ h zs I B I (by def. of universal,)

It is not hard to extend this result to give the expected performance of our associative
memory on a sequence R of requests. To make the notion of “performance” more
precise, we define the cost of an individual request referring to the key x to be 1 + 8,(x, S)
where S is the set of previously inserted keys. The cost C(f, R) of the hash function f
on R is the sum of the costs of the individual requests in the order specified by R.

Note that this cost function is appropriate only for an associative memory which
uses a linked list collision resolution strategy. Other collision resolution schemes would
have other cost functions associated with them. For example, if the keys with the same
index were stored in a balanced tree, the corresponding cost function would be smaller-
namely, the cost of an individual request would be 1 + log&(x, S)).

The following theorem gives a nice bound on the expected linked-list-cost of using
a universal, class of hash functions.

PROPOSITION 3. Let R be a sequence of r requests which includes k insertions.
Suppose H is a universal, class of hash functions. Then if we choose f at random from H,
Expected(C(f, R)) < r(l + k/l B I).

Proof. The expected cost of R is the sum of the expected costs of the individual
requests. Proposition 2 and the definition of cost tell us that an individual request has
expected cost no greater than 1 + k/l B j. 1

Often, an estimate for the number of items to be stored in an associative memory
is known. If so, one can choose [B (, the number of linked lists, so that k/(B (is approxi-

UNIVERSAL CLASSES OF HASH FUNCTIONS 147

mately 1. Proposition 3 then implies that the expected cost of processing a sequence
of requests is linear in the number of requests. Notice that this linear bound holds
for any sequence of requests, not just for the “average” sequence. Fagin, Nievergelt,
Pippenger and Strong [2] have developed an extendible hashing scheme which achieves
the linear time bound even when there is no estimate on 1 S j. Their system involves
little overhead, and only requires local remapping of data as j S j expands or contracts.

Proposition 2 is helpful for other applications of hashing as well. For instance, an
optical character reader postprocessing system is described in [9]. This system is designed
to check if a word x is a member of a set of valid words S. The set {f(y) (y E S} is
stored in memory. To test whether x is in S, a check is made to see iff(x) is in the stored
set. Since f(y) is generally shorter than y, a considerable amount of space is saved.
However, there is a chance of error; iff(x) = f(y) f or some y tz S, then x may erroneously
be accepted as valid.

Proposition 2 gives a bound on the probability of error when f is chosen from a class
of universal, functions, and suggests that to achieve an error probability of less than p,
we should let B have size 1 S l/p. To be precise, Proposition 2 says that if x and S are
specified, then a randomly chosenf will erroneously accept x with probability less than
I/p. This is not the order of doing things which will occur in practice of course. First

f is chosen by the system designer, then x is input by the user. However, assuming
that the user does not choose x based on any knowledge of the hash function chosen,
the order of choice is immaterial to the probability.

We no not intend to imply that all functions in a universal, class are equally good:
conceivably there is a function which maps each input into the same element of B,
and another which maps each element of S into one element of B and maps everything
else into a different index. The first function would accept any x as valid, whereas the
second would never make a mistake. What is gained by using a universal, class is the
knowledge that if one has simply made a random choice of hash function from such
a class there is a favorable probability that a given mistake will be caught. Intuitively,
we are saying that a universal, class contains enough good functions that a random choice
is very likely to be a good choice. In particular, we need not be concerned with statistics
on the frequencies of English letter combinations or with probable spelling errors.

For some applications of hashing, it is not enough to know that the average performance
will be good. There may be some level of performance such that any worse performance
would not be tolerated. For instance, in an online application, we may want some
assurance that no individual transaction will cost more than, say, t times the expected
cost. The next proposition gives some assurance in this direction.

PROPOSITION 4. Let x E A and SC A. Let p be the expected value of Sf(x, S). (By
Proposition 2, p < 1 S \/\ B I.) Choose f at random from a universal, collection of junctions,
H. Then the probability that 6,(x, S) > tp is less than 1 /t.

Proof. The collection of numbers ($(x, S) j f E H} has mean p but no negative
numbers. Thus, for each function with al(x, S) > tp, there must be more than t - 1
functions with 6,(x, S) < p to keep the mean down to cc. i

148 CARTER AND WEGMAN

Note that a similar argument shows that the probability that C(f, I?) is greater than
t times its expected cost is also less than l/t.

These are often not particularly useful bounds on the probability that a cost is
intolerable. They can be improved by two methods. Firstly, a particular class of hash
functions can be analyzed in more detail. For instance, for the classes H, and Hs presented
in the next section, Markowsky [7] has calculated bounds on the second and fourth
moments of the set of costs. These are used to show that when 1 S I/I I3 1 is about 1,
the probability that a cost (of a request or sequence of requests) is greater than tp is
less than 1 /t2 and also less than 1 l/t4.

A second way to insure that no cost will be intolerable is to change the collision
resolution strategy. For instance, suppose balanced trees ([I], pp. 145-152) are used
in place of the linked lists mentioned earlier. When 1 5’ //I B I is about 1, this makes
a small improvement in the expected value of af(x, S), and may not be worth the added
bookkeeping if one cares only about the average cost. However, using balanced trees
makes an exponential reduction in the probability that a request is intolerably expensive.
In order for a request involving the key x to require searching more than t levels of the
tree, 6,(x, S) would have to have at least 2t elements. Assuming 1 S I/j B 1 = 1, this
means that the probability of a request requiring more than t steps is no more than
l/21, and if f is chosen from Hz or H3 , the probability is less than 1/24t.

We conclude this section by showing that although our approach to hashing achieves
independence from the choice of input, it does not entail a poorer expected performance
than the traditional approach. More precisely, we show:

PROPOSITION 5. Given any single hash function, let E1 be the expected cost with respect
to that function of a random request after k random insertions have been made. Let E2 be
the expected cost (averaging over a universal, class of hash fun&ions) of any request after
any k insertions have been made. Then E1 3 (1 - E) E, where E = 1 B j/I A I.

Proof. Let a = j A I and b = I B I. Let S be the set of elements of A which were
inserted prior to the request on the element X. Proposition 2 implies that E2 < 1 + I S I/b.
We will show that E1 >, 1 + (S 1(1/b - l/u), assuming that S and x were chosen
randomly. A simple calculation then verifies that E1 3 (1 - b/a) E, .

In the proof of Proposition 1, it was shown that &(A, A) > a2(l/b - l/u) for any
hash function f. Thus if x and y are chosen at random from A, then Expected &(x, y)) =
(I/&) &(A, A) >, l/b - l/u. Recall that &(x, S) = CVes &(x, y). Since the expectation
of a sum is the sum of the individual expectations, Expected (5$(x, S)) > I S /(l/b - l/u).
Thus, E1 > 1 + 1 S 1(1/b - I/a). 1

SOME UNIVRRSAL~ CLASSES

The first class of universal, hash functions we present, HI , is suitable for applications
where the bit strings which represent the keys can conveniently be multiplied by the
computer.

UNIVERSAL CLASSES OF HASH FUNCTIONS 149

Suppose A = (0, I ,..., a - l> and B = (0, I,..., b - 1). Let p be a prime withp >, a.
Let g be any function from 2, to B which, as closely as possible, maps the same number
of elements of Z, into each element of B. Formally, we require i{y E Z, 1 g(y) = ;}I <
[p/b1 for all i E B. A natural choice for g is the residue modulo b. When b = 2k for
some K, this amounts to taking the last K bits in the binary representation of y.

Let m and n be elements of Z, with m # 0. We define Jz,,~: A - Z, by h,&x) ==
(mx +- n) mod p. Now definef,,,(x) = g(hm,n(x)). Th e c 1 ass HI is the set (fm,% I m, n E Z,,
and m + 01.

The following lemma is useful in proving that this class is universal, .

LEMMA 6. When HI is defined as above, then for any x, y E A with x # y, aH1(x, y) =

&7(-G 7 z%J

Proof. There is a natural correspondence between the functions h,,, and the ordered
pairs (Y, s) where r, s E Z, and r # s. Specifically, we associate the function h,,, with
the ordered pair (h,,,(x), h,,,(y)). S’ mce m # 0 and x # y, hmsn(x) # h,,,(y). This
correspondence is one-to-one and onto since for a fixed x, y, r and s, the linear equations
xm + n ~2 r (modp) and ym + n = s (modp) have a unique solution for nz and n in the
field Z, .

If (y, s) is the pair (h&X), L,,(y)), then f,&x) = fn,,&) if and only if g(r) = g(s).
Thus, 6,&r, ~1) = 6,(Z, , Z,). 1

PROPOSITION 7. The class HI is universal, .

Proof. Let ni be the number of elements in {t E Z, j g(t) = i>. g was chosen so that
na < [pjbl for each i. Since p and b are integers, [p/b] < ((p - 1)/b) + 1, Thus for a
given 1’ E Z, , there are no more than (p - 1)/b c h oices for s such that Y # s but g(r) =
g(s). Since there are p choices for Y, p(p - 1)/b > a,,(~, y). Recalling that for x = V,
sH1(x, y) = 0, this shows that HI is universal, . fl

If desired, p can be chosen so the mod p operation can be calculated without a division.
For instance, suppose p = 2j - 1 for some j, and x is expressible in 2j bits. Then there
exist x1 , sz < 2i such that x = 2jx, + x2 . x1 is the j high order bits of the binary
representation of X, and x2 is the j low order bits. x = x1 + xa (modp), since 2j = 1
(mod p). Thus, the 2j bit number x can be reduced to a congruent j + 1 bit number
by performing a shift and an add operation. To get x (modp), only a test and perhaps
a subtract are needed. When one uses this method, and b is a power of two (so the mod b
operation can be implemented by taking the last bits), then computing a function from
H, takes only one multiply and a few addition, shift and Boolean operations.

It may seem that the addition of n in the class of functions given above plays an un-
important role. This is only partly true. Suppose for m E Z, we define h,,,(x) = mx
(modp), and as before define f*(x) as g(h,(x)). Let H = {fm 1 m E Z, and m # 0).
It can be shown that this class of functions comes within a factor of two of being
universal, , that is %&,Y) < 20 H l/l B I) f or any x and y. On the other hand, this
bound cannot be improved significantly. For instance, let b = \ B /, and choose K so

150 CARTER AND WEGMAN

that p = Kb + K + 1 is prime (there will be infinitely many such R’s.) Let g(x) = x
(mod b). Let x = 1 and y = b + 1. It can be shown that the 2K functions jr , fa ,..., fk ,

f9--k ,f*-?4+1 YVfll--1 each map x and y to the same value. Thus, 6,(x, y) = 2K, while

IHI P-1 kb + k -=- =-=
IBI b b i 1

l+; k.

The universal, class HI may not be convenient when the keys are too long to be
multiplied using a single machine instruction. However, the next proposition gives
a method of extending a class of functions for long keys.

PROPOSITION 8. Suppose B = (0, I,..., b - I} where b is a power of two and H is a
class of functions from A to B with the property that for some real number Y, for each x, y E A
with x # y, and for each i E B,](f E H) f (x) @f(y) = i}] < r / H I. (Recall that @ is
the exclusive-or operation.) Dejine the class J of hash functions from A x A to B as follows:
For f, g E H, de$ne hf,A(xl , x2)) = f (xl) 0 g(xJ, and let J = {hr,g If, g E H). Then for
aZZx,yEAxAwithx#y,andforalZiEB,I(hEJ]h(x)~h(y)=i)j~~~J].

Proof. Given x, y c A x A with x # y, write x = (x1, xs) and y = (yr ,ys).
Without loss of generality, we may assume that xi # yi (otherwise, interchange the
subscripts 1 and 2 in the following.) Given i E B,

IQ E J I h(x) 0 h(y) = ill = Nf, g E H If (x1) 0 g(x,) @f (yl> 0 dy2) = i>I

= E I{f E H If (x1) Of (n> = i Og(xz) OdydH.

The hypothesis implies that each term of this summation is bounded by Y 1 H /. Thus,
IPEJIh(x)Oh(y) =i>l <rlHHj2 =yIJI. I

Proposition 8 can be used to produce universal, classes which work on long keys.
Suppose His a class of functions which can be applied to keys of length 01 and H satisfies
the condition of the proposition with Y = I// B /. Then the resulting J is a class of
functions which can be applied to keys of length 2or. Furthermore, J is universals .
To see this, notice that if x # y, r 1 J 1 > I{h E J 1 h(x) @ h(y) = O}l = 8,(x, y).
Repeated application of Proposition 8 allows us to extend the functions to arbitrarily
long keys. Notice that if the functions in H can be applied in constant time, then the
time required to compute an extended function is proportional to the length of the key.

If we apply Proposition 8 to the class HI defined earlier, we do not quite get a universal,
class. This is because the smallest Y which satisfies the condition of the proposition
is somewhere between l/j B 1 and (l/j B I)(1 + (I B 1 + l)/(p - 1)). In most applica-
tions, (B 1 is very small compared to p, so the results of the theorems of this paper
are true “within 6.” Alternatively, one could modify the definition of H, to allow m
to equal 0. The resulting class is still universal, , and Proposition 8 applies with Y = l/l B I.

The following universal, class of functions-denoted H3 for historical reasons-
does not require multiplication and may be better for many applications. Essentially,
if one considers the elements of A and B to be vectors over the field of two elements,

UNIVERSAL CLASSES OF HASH FUNCTIONS 151

then Ha is the set of linear transformations from A to B. More explicitly: Let A and B
be the set of i-bit and j-bit binary numbers, respectively. Let M be the set of the arrays
of length i whose elements are from B. (One can think of the arrays in M as i by j
Boolean matrices.) For m E M, let m(k) be the bit string which is the Kth element of m,
and for zc E A, let xk be the kth bit of x. We define f?,(x) = xim(1) @x.92(2) @ ..’ e
.qm(i). The class Ha is the set {fm / m E M).

PROPOSITION 9. The class H3 dejned above is universal, .

Proof. The proof is by induction on i using Proposition 8.
When i = 1, we have A = (0, I}, M = B, and for m E B, fm(0) = 0 and f&l) = m.

The condition of Proposition 8 is satisfied with Y = l/J H I since the only possible
choices for x and y are x = 0, y = 1 (or x = 1, y = 0), and for each i, fi is the only
function for which f,(O) @ fi(l) = i.

Proposition 8 supplies the induction step. Thus the condition of Proposition 8 is
satisfied for all i, and H3 is universal, . 1

The class Hz of hash functions presented below is similar to H3 , but the functions
in H, require less time and more space. This is accomplished by first mapping the key
into a longer bit string, but one with fewer 1’s. Specifically, suppose A can be viewed
as the set of i-digit numbers written in base 01. For x E A, let s*k denote the kth digit
of x. Define g to be the function which maps x into the bit string of length B which
has I’s in positions xi + 1, x1 + x2 + 1, x1 + x2 + xa + 1, etc. Then 1 A 1 = 01i and
I B 1 = 2’. If H3 is the class defined above for &-bit keys, then H, = {fg j f E Ha}.
The fact that H, is universal, follows immediately from the facts that g is 1 to 1 and Hz3
is universal, .

We would like to emphasize that the hash functions described in this section are fast.
For instance, the class HI extended by the technique of Proposition 8 has been im-
plemented using the IBM 360 instruction set [lo]. This code requires about 4 fast
instructions per byte of key. Thus, there is not a time penalty associated with using
universal, hash functions.

IMPORTANCE

The next two theorems summarize the results proved in this paper which we believe
are of practical and theoretical importance. Frequently, algorithms are analyzed making
the assumption that multiplications and other basic operations take unit time. The
number of such operations is said to be the cost of the algorithm.

THEOREM 10. Using a standard model of computation, where multiplication, choosing
of random numbers, and memory references take unit time, any sequence of r requests to an
associative memory can be processed in expected time O(r).

Proof. Proposition 3 implies that when a universal, class of hash functions is used
and / B 1 is chosen approximately equal to r, then the expected number of memory

152 CARTER AND WEGMAN

references per request is less than 2 when averaged over all functions in the class. Under
this model a member in the class iYr may be chosen and may be applied to each of the
requests in constant time. 4

If keys are too long, this model is unrealistic and we must discard the assumption
that multiplication takes unit time. We can also show:

THEOREM 11. Using a standard model, where Boolean operations on machine addresses,
choosing of random numbers, and memory references take unit time, any sequence of requests
to an associative memory can be processed in expected time linear in the number of bits in
the input.

Proof. Use class Hz or H3 . 1

There are several ways in which universal hash functions are of practical importance.
In many applications, it is quite easy to change the hash function each time a program
is run. This makes it mathematically certain that the linear time bounds of Theorems 10
and 11 are achieved. This is true even if the program is run on different data each time,
provided that the choice of hash function is independent (in the probabilistic sense)
of the data. This will be the case if the hash function is chosen randomly after the data
is established.

For other applications of hashing, it may be awkward to change the hash function
frequently. For instance, changing the hash function in a large database system would
require moving a large amount of data to new locations. In this case, there are several
strategies one could employ. The simplest is to once and for all randomly choose
a hash function from a universal, class. The expected time required by the associative
memory subroutine of the application will be linear in the number of requests. Further-
more, Proposition 4 and reference [7] give some bounds on the probability that the actual
time required is significantly greater than the expected time. A second strategy is to
occasionally observe how many collisions were occurring, and change the hash function
if there were significantly more than expected. This strategy makes good performance
certain, again assuming the choice of hash function and the data are independent.

A third value of a universal, class of functions is that one can be sure that there
are many acceptable functions in the class. Programmers sometimes spend a con-
siderable amount of time searching for a hash function which will perform well on
their test data ([6], p. 508-513). This search time can be reduced by simply trying
out a few functions chosen randomly from a universal, class.

The theoretical importance of universal, classes is that they allow one to get a good
bound on the average performance of an algorithm which uses hashing. The problem
with an ordinary hashing scheme is that the algorithm might tend to make requests
involving a particular subset of the keys, and these favored keys may be distributed
unevenly by the particular hash function being used. There is often a complicated
interaction between the inputs to the algorithm and the keys the algorithm requires
to be hashed. This interaction makes the average performance of such an algorithm
difficult to determine. However, if one uses a universal, class of hash functions, then

UNIVERSAL CLASSES OF HASH FUNCTIONS 153

it does not matter which particular set of keys are generated by the algorithm. We give
two examples of algorithms which benefit from our approach.

Rabin [8] has developed an algorithm which finds the nearest neighbors of a collection
of points in a plane, given the coordinates of the points. This algorithm involves making
a random choice of points, and it uses hashing. If one also randomly chooses the hash
function from a universal, class, then the expected running time of the algorithm will
always be linear in the number of points.

In [4] and [5] an algorithm is suggested for multiplying sparse polynomials, using
hashing. We can strengthen the results of these papers. Assume scalar multiplication
and addition take constant time. The following algorithm can multiply two polynomials
P and Q with n and m non-zero terms, respectively, in average time O(nm). Let CP, ,
CP s ,..., CP, be the coefficients of the n terms of P. Let EP, , EP, ,..., EP, be the
exponents of those terms. Let CQi and EQi stand for the same quantities of Q. Store
and Retrieve are the associative memory operations introduced earlier, and are im-
plemented using a universal, class of hash functions. If a value has not been stored
previously for a given key, a Retrieve will return zero.

Begin
Choose a hash function;
Fori:= 1 tondo

Forj:= 1 tomdo
Begin
K = Retrieve (EP, + EQ,);

Store (EP, + EQj , K + CP, c CQj)
End;

Print all keys and values which have been stored;
End;

Since addition and multiplication are viewed as taking constant time, the first class
of functions we presented seems appropriate for this analysis.

FUTURE RESEARCH

There are a number of areas which can be investigated, such as:

(1) Improve the bounds cited here on the probability that a particular function
from H, or H3 will perform poorly on a particular input.

(2) Extend the analysis to other storage and retrieval algorithms which involve
hashing, such as double hashing and open addressing.

(3) When should one decide that a particular function is a poor choice and it
would be worth the effort to choose a new function and rehash ?

(4) What is the minimum number of bits necessary to specify a function from
a universal, class? One class not discussed in this paper is close to being universal,
and requires log(log] A 1) log(\ B 1) bits.

154 CARTER AND WEGMAN

ACKNOWLEDGMENTS

We would like to thank Ashok Chandra for helping suggest and formulate the problem; Dave
Glickman for suggesting we examine the table look-up technique; Hania Gajewska for suggesting
revisions; Walter Rosenbaum for discussions about a practical use of this work; and George
Markowsky for help in understanding the distribution of performance of the class Hz .

REFERENCES

1. A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, “The Design and Analysis of Computer
Algorithms,” Addison-Wesley, Reading, Mass., 1974.

2. R. FAGIN, J. NIEVERGELT, N. PIPPENGER, AND H. R. STRONG, “Extendible Hashing: A Fast
Access Method for Dynamic Files,” IBM Research Report R J 2305.

3. J. T. GILL III, Computational complexity of probabilistic Turing machines, in “Proceedings
of the Sixth ACM Symposium on the Theory of Computing,” May 1974, Seattle, Wash.,
pp. 91-95.

4. E. GOTO AND Y. KANADA, Hashing lemmas on time complexities with applications to formula
manipulation, in “Proceedings of the 1976 ACM Symposium on Symbolic and Algebraic
Computation,” Yorktown Heights, N. Y., pp. 149-153.

5, F. GUSTAVSON AND D. Y. Y. YUN, Arithmetic complexity of unordered or sparse polynomials,
in “Proceedings of the 1976 ACM Symposium on Symbolic and Algebraic Computation,”
Yorktown Heights, N. Y., pp. 154-159.

6. D. E. KNUTH, “The Art of Computer Programming” Vol. 3, Sorting and Searching, Addison-
Wesley, Reading, Mass., 1973.

7. G. MARKOWSKY, J. L. CARTER, AND M. N. WEGMAN, Analysis of a universal class of hash
functions, in “Proceedings of the Seventh Mathematical Foundations of Computer Science
Conference”, Lecture Notes in Computer Science, Vol. 64, Springer-Verlag, Berlin.

8. M. 0. RABIN, Probabilistic algorithms, in “Proceedings of Symposium on New Directions and
Recent Results in Algorithms and Complexity” (J. F. Traub, Ed.), pp. 21-39, Academic Press,
New York, 1976.

9. W. S. ROSENBAUM AND J. J. HILLIARD, Multifont OCR postprocessing system, IBM J. Res.
Dwelop. 19 (1975), 398-421.

10. D. H. A. SMITH, private communication.
11. R. SOLOVAY AND V. STFUSSEN, A fast Monte-Carlo test for primality, SIAM J. Comput. 6 (1977),

84-86.

